Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\hept{\begin{cases}\left(x+2016\right)^{48}\ge0\\\left(y-2014\right)^{50}\ge0\end{cases}}\Rightarrow\left(x+2016\right)^{48}+\left(y-2014\right)^{50}\ge0\)
Mà theo đầu bài:
\(\left(x+2016\right)^{48}+\left(y-2014\right)^{50}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+2016\right)^{48}=0\\\left(y-2014\right)^{50}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2016\\y=2014\end{cases}}}\)
do (x+2016)48 và (y-2014)50 đều lớn hơn hoặc bằng 0 mà (x+2016)48+(y-2014)50=0 nên suy ra (x+2016)48=(y-2014)50=0
=>x=-2016, y=2014
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x^3-8x\left(x+2\right)=6\\ \Leftrightarrow\left(x^2+3x+2\right).\left(x+3\right)-x^3-8x^2-16x=6\\ \Leftrightarrow x^3+6x^2+11x+6-x^3-8x^2-16x-6=0\\ \Leftrightarrow-2x^2-5x=0\\ \Leftrightarrow x.\left(-2x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\-2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
\(\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}=0\)
Ta thấy: \(\begin{cases}\left(x-\frac{1}{5}\right)^{2014}\ge0\\\left(y+0,4\right)^{2016}\ge0\\\left(z-3\right)^{2018}\ge0\end{cases}\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}\ge0\)
\(\Rightarrow\begin{cases}\left(x-\frac{1}{5}\right)^{2014}=0\\\left(y+0,4\right)^{2016}=0\\\left(z-3\right)^{2018}=0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}\)
lần sau viết đề cẩn thận hơn nhé