Cho x,y>0 và \(x^3+y-x\sqrt[3]{y}=-\frac{1}{27}\). Tính \(\frac{x}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y-x\sqrt[3]{y}=-\frac{1}{27}\)
\(\Leftrightarrow x^3+\left(\sqrt[3]{y}\right)^3+\frac{1}{27}-x\sqrt[3]{y}=0\)
\(\Leftrightarrow\left(x^3+\left(\sqrt[3]{y}\right)^3+\frac{1}{3^3}\right)-3.x.\sqrt[3]{y}.\frac{1}{3}=0\)
\(\Leftrightarrow\left(x+\sqrt[3]{y}+\frac{1}{3}\right)\left(x^2+\left(\sqrt[3]{y}\right)^2+\frac{1}{9}-x^2.\sqrt[3]{y}-\sqrt[3]{y}.\frac{1}{3}-\frac{1}{3}x\right)=0\)
\(\Rightarrow x+\sqrt[3]{y}=\frac{-1}{3}\)hoặc \(x=\sqrt[3]{y}=\frac{1}{3}\)
Thay vào mà tính :P
ĐKXĐ: ...
Lấy pt cuối trừ 3 lần pt đầu ta được:
\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^3+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^3+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^3=\frac{512}{27}\)
Pt (2) tương đương:
\(x+\frac{1}{x}-2+y+\frac{1}{y}-2+z+\frac{1}{z}-2=\frac{64}{9}\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=\frac{64}{9}\)
Đặt \(\left(\sqrt{x}-\frac{1}{\sqrt{x}};\sqrt{y}-\frac{1}{\sqrt{y}};\sqrt{z}-\frac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\a^2+b^2+c^2=\frac{64}{9}\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\)
Ta có: \(a^3+b^3+c^3-3abc=\frac{512}{27}-3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=\frac{512}{27}-3abc\)
\(\Leftrightarrow\frac{8}{3}.\left(\frac{64}{9}-0\right)=\frac{512}{27}-3abc\)
\(\Rightarrow abc=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\abc=0\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;0;\frac{8}{3}\right)\) và hoán vị
Hay \(\left(x;y;z\right)=\left(1;1;9\right)\) và hoán vị
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Ta có: \(\frac{1}{2}.2x\left(1-x\right)\left(1-x\right)\le\frac{1}{2}\left[\frac{2x+1-x+1-x}{3}\right]^3=\frac{4}{27}\)
\(\Rightarrow\sqrt{x}\left(1-x\right)\le\frac{2\sqrt{3}}{9}\Rightarrow\frac{1}{\sqrt{x}\left(1-x\right)}\ge\frac{9}{2\sqrt{3}}\)
\(\Rightarrow\frac{\sqrt{x}}{1-x}\ge\frac{3\sqrt{3}}{2}x\). Thiết lập tương tự hai BĐT còn lại và cộng theo vế thu được đpcm.