\(x^3+y-x\sqrt[3]{y}=\frac{-1}{27}\)tính  \(\frac{x}{y}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3+y-x\sqrt[3]{y}=-\frac{1}{27}\)

\(\Leftrightarrow x^3+\left(\sqrt[3]{y}\right)^3+\frac{1}{27}-x\sqrt[3]{y}=0\)

\(\Leftrightarrow\left(x^3+\left(\sqrt[3]{y}\right)^3+\frac{1}{3^3}\right)-3.x.\sqrt[3]{y}.\frac{1}{3}=0\)

\(\Leftrightarrow\left(x+\sqrt[3]{y}+\frac{1}{3}\right)\left(x^2+\left(\sqrt[3]{y}\right)^2+\frac{1}{9}-x^2.\sqrt[3]{y}-\sqrt[3]{y}.\frac{1}{3}-\frac{1}{3}x\right)=0\)

\(\Rightarrow x+\sqrt[3]{y}=\frac{-1}{3}\)hoặc \(x=\sqrt[3]{y}=\frac{1}{3}\)

Thay vào mà tính :P

17 tháng 8 2016

bài trên là rút gọn nha mấy bạn 

giải giùm mik vs mik cảm ơn nhìu

 

8 tháng 7 2018

1.

Xét riêng 2 căn lớn đầu tiên

Bình phương, thu gọn được căn(12-8 căn 2)

Giờ kết hợp kết quả này với căn lớn còn lại

Tiếp tục bình phương, thu gọn là xong

26 tháng 6 2019
https://i.imgur.com/E0sw9M9.jpg
2 tháng 6 2017
  1. \(\frac{\sqrt{27\left(1-\sqrt{3}\right)^4}}{3\sqrt{15}}=\frac{\sqrt{3.3^2\left(1-\sqrt{3}\right)^4}}{3\sqrt{15}}=\frac{3\left(1-\sqrt{3}\right)^2}{3\sqrt{15}}=\frac{1-2\sqrt{3}+3}{\sqrt{15}}=\frac{4-2\sqrt{3}}{\sqrt{15}}\)
  2. \(=\frac{\sqrt{10}\left(12-8\sqrt{2}+7.15\sqrt{2}\right)}{\sqrt{10}}=12+97\sqrt{2}\)
  3. \(=\sqrt{\frac{x.x\sqrt{y}}{y}}=\sqrt{\frac{x^2}{\sqrt{y}}}=\frac{|x|}{\sqrt[4]{y}}\)
7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)