cho các số thực a, b ,m thỏa mãn : a+b=2m và ab=m2 chứng tỏ rằng a=b giải hộ mink nha thank nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì \(\left\{\begin{matrix} a+b=2m\\ ab=m^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b)^2=4m^2\\ 4ab=4m^2\end{matrix}\right.\)
\(\Rightarrow (a+b)^2=4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow (a-b)^2=0\Rightarrow a=b\)
Ta có đpcm.
xét a-b=2(a+b)
a-b=2a+2b
a-2a=2b+b
-a=3b => a=-3b(1)
xét 2(a+b)=a/b(2)
Từ (1);(2) => 2(-3b+b)=-3b/b
2*(-2)b=-3
-4b=-3
b=3/4
=>a=-3*3/4=-9/4
Vậy a=-9/4; b=3/4
Cho hai số thực a,b thỏa mãn a > b và ab = 2.
Tìm GTNN của M = (a^2 + b^2)/(a-b)
giải hộ e cần gấp ạ..
Ta có:
a.b.c.d-a =a.[b.c.d-1]=2005
a.b.c.d-b =b.[a.c.d-1]=2009
a.b.c.d-c =c.[b.a.d-1]=2011
a.b.c.d-d =d.[b.c.a-1]=2015
Ta có :a+b=c+d
\(\Rightarrow\) a=c+d-b
Thay vào ab+1=cd
\(\Rightarrow\) (c+d-b)*b+1=cd
\(\Leftrightarrow\)cb+db-cd+1-b2=0
\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0
\(\Leftrightarrow\) (b-d)(c-b)=-1
Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 trường hợp
TH1: b-d=-1 và c-b=1
\(\Leftrightarrow\) d=b+1 và c=b+1
\(\Rightarrow\) c=d (1)
TH2: b-d=1 và c-b=-1
\(\Leftrightarrow\) d=b-1 và c=b-1
\(\Rightarrow\) c=d (2)
Vậy từ (1) và (2) ta có c=d.