tìm giá trị lớn nhất của √(a+1) +√(b+1) +√(c+1) biết a>0, b>0, c>0, a+b+c=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)
\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)
\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
\(\Rightarrow M\le\frac{1}{3}\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)
Vậy GTLN của M là 1/3
Với 2 số x,y > 0 Theo Cauchy ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\frac{\left(x+y\right)^2}{4}\ge xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}^{\left(1\right)}\)
\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Áp dụng (1) ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\cdot\frac{4}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)
\(\Rightarrow3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
Đẳng thức xảy ra khi a=b và (a+b)=c hay a=b=1,5 và c=3.
\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)
Min A = 9 khi 1/a =1/b =1/c => a =b =c = 1/3
\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=\frac{a}{a}-\frac{1}{a}+\frac{b}{b}-\frac{1}{b}+\frac{c}{c}-\frac{4}{c}\)
=> \(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)(1)
Ta lại có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0< =>a+b-2\sqrt{ab}\ge0=>\frac{\left(a+b\right)^2}{4}\ge ab\)
<=> \(\frac{a+b}{ab}\ge\frac{4}{a+b}< =>\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\left(\frac{4}{a+b+c}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge4\left(\frac{4}{6}\right)=\frac{16}{6}=\frac{8}{3}\)(Do a+b+c=6 theo gt)
Thay vào (1), suy ra:
\(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
=> GTLL của P là: \(P=\frac{1}{3}\)
Dấu '=' xảy ra khi a=b và a+b=c => c=3; a=b=1,5
\(\Sigma\frac{a}{1+a}=\Sigma\frac{1}{16}a\left(\frac{16}{a+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}\right)\le\Sigma\frac{1}{16}a\left(\frac{1}{a}+9\right)=\frac{3}{4}\)