chứng minh ADC đồng dạng vs BDH
Hoạc chứng minh IM.IC=2IE
Nêu hướng thôi cx đc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBCD và ΔYZT có
góc DBC=góc TYZ
góc BCD=góc YZT
=>ΔBCD đồng dạng với ΔYZT
b: ΔBCD đồng dạng với ΔYZT
=>góc BDC=góc YTZ
=>góc BAC=góc YXZ
a: Sửa đề: ΔAEB
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
Xét ΔADE và ΔACH có
góc DAE chung
góc ADE=góc ACH
=>ΔADE đồng dạng với ΔACH
a: Xét ΔABC có
M là trung điểm của AC
H là trung điểm của bC
Do đó: MH là đường trung bình của ΔABC
Suy ra: MH//AB
hay ABHM là hình thang
Bài giải
a,
\(\widehat{DAC}=\widehat{BAD}=\widehat{DBI}\)( AD là tia phân giác \(\widehat{BAC}\) )
\(\widehat{ADC}=\widehat{BDI}\)
\(\Rightarrow\Delta ADC\sim\Delta BDI\left(g.g\right)\)
b, \(\Delta ADC\sim\Delta BDI\left(cmt\right)\Rightarrow\widehat{AIB}=\widehat{ACD}\)
\(\widehat{BAD}=\widehat{DAC}\)
\(\Rightarrow\Delta ABI\sim\Delta ADC\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AI}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AI\)
Xét tam giác CMH và tam giác CAD có
góc C chung
góc CHM = góc CAH = 90
=> đồng dạng
Xét tứ giác AEDB có: \(\widehat{AEB} = \widehat{ADB} = 90^o \)
⇒ Tứ giác AEDB nội tiếp (2 đỉnh E và D kề nhau cùng nhìn AB dưới 1 cặp góc bằng nhau)
⇒ \(\widehat{EAD} = \widehat{EBD} \) (cùng chắn \(\stackrel\frown{\text{ED}}\))
Xét ΔADC và ΔHDB có:
\(\widehat{ADC} = \widehat{HDB} = 90^o\)
\(\widehat{CAD} = \widehat{HBD} \) (cmt)
⇒ ΔADC ∼ ΔBDH (g-g)
giúp mik vs