Biết \(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)cmr: \(\frac{x}{a}\)=\(\frac{y}{b}\)=\(\frac{z}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
* C1 :(bz - cy)/a = (abz - acy)/a2
(cx - az)/b = (bcx - abz)/b2
(ay - bx)/c = (acy - bcx)/c2
Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c
=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0
=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0
=>bz - cy = cx - az = ay - bx = 0
*Xét bz - cy = 0
=>bz = cy
=>z/c = y/b
Chứng minh tương tự = >x/a = y/b ; x/a = z/c
=> x/a = y/b = z/c
*C2 :
(bz - cy)/a = (abz - acy)/ax
(cx - az)/by = (bcx - abz)/by
(ay - bx)/cz = (acy - bcx)/cz
Làm tương tự như C1
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Vì : bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
Ap dung tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
Vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
Vì cx-az/b=0=>cx=az=>x/a=z/c (2)
Từ (1) và (2) => x/a=y/b=z/c
giả sử
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
ta có:\(\text{}\text{}\text{}\text{}\text{}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)
từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> điều giả sử đúng => đpcm
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
Do a,b,c khác 0, áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)= \(\frac{bza-cya}{a^2}=\frac{cxb-âzb}{b^2}=\frac{ayc-bxc}{c^2}\)
= \(\frac{bza-cya+cxb-azb+ayc-bxc}{a^2+b^2+c^2}\)\(=\frac{0}{a^2+b^2+c^2}=0\)
Suy ra : bz - cy = 0 \(\Rightarrow\) bz= cy \(\Rightarrow\) \(\frac{z}{c}=\frac{y}{b}\) (1)
cx - az = 0 \(\Rightarrow\) cx = az \(\Rightarrow\) \(\frac{x}{a}=\frac{z}{c}\) (2)
ay - bx = 0 \(\Rightarrow\) ay = bx \(\Rightarrow\)\(\frac{y}{b}=\frac{x}{a}\) (3)
Từ (1) , (2) và ( 3) \(\Rightarrow\)\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) (điều phải chứng minh )
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\left(1\right).\)
Nhân thêm cả tử và mẫu của (1) với a hoặc b và b;c
Từ (1) Ta lại có: \(\frac{bz-cy}{a}=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
\(=\frac{abz+acy+bcx+baz+cay+cbx}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bx-cy=0\Rightarrow bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\\ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{y}{b}=\frac{x}{a}\end{cases}}\)
Vậy \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)
CHÚC BẠN HỌC TỐT