Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
Do a,b,c khác 0, áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}}\)
giả sử
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
ta có:\(\text{}\text{}\text{}\text{}\text{}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)
từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> điều giả sử đúng => đpcm
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\left(1\right)\)
\(\frac{cx-az}{y}=\frac{cak-cak}{y}=0\left(2\right)\)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\left(3\right)\)
Từ (1),(2),(3) => đpcm
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\frac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx+az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abz-acy}{a^2}=\frac{bcx-abx}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{abz-abz+cbx-cbx+acy-acy}{a^2+b^2+c^2}=\frac{0+0+0}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
=>bz-cy=0=>bz=cy=>z/c=y/b
cx-az=0=>cx=az=>x/a=z/c
=>x/a=y/b=z/c
=>đpcm
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)= \(\frac{bza-cya}{a^2}=\frac{cxb-âzb}{b^2}=\frac{ayc-bxc}{c^2}\)
= \(\frac{bza-cya+cxb-azb+ayc-bxc}{a^2+b^2+c^2}\)\(=\frac{0}{a^2+b^2+c^2}=0\)
Suy ra : bz - cy = 0 \(\Rightarrow\) bz= cy \(\Rightarrow\) \(\frac{z}{c}=\frac{y}{b}\) (1)
cx - az = 0 \(\Rightarrow\) cx = az \(\Rightarrow\) \(\frac{x}{a}=\frac{z}{c}\) (2)
ay - bx = 0 \(\Rightarrow\) ay = bx \(\Rightarrow\)\(\frac{y}{b}=\frac{x}{a}\) (3)
Từ (1) , (2) và ( 3) \(\Rightarrow\)\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) (điều phải chứng minh )