Bài 2: Cho AABC có Â = 62°, các đường phân giác BD và CE cắt nhau tại I.
a) Tính BIC
b) Tính BAI
c) Chứng minh điểm I cách đều ba cạnh của AABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc IBC+góc ICB=1/2(góc ABC+góc ACB)
=1/2(180-60)=60 độ
=>góc BIC=120 độ
b: Xét ΔABC có
BD,CE là đường phân giác
BD cắt CE tại I
=>I là tâm đường tròn nội tiếp
=>AI là phân giác của góc BAC
=>góc BAI=góc CAI=60/2=30 độ
c: Xét ΔABC có I là tâm đường tròn nội tiếp
nên I cách đều ba cạnh của tam giác
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF
a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng vơi ΔHAC
=>CA/CH=CB/CA=AB/HA
=>CA^2=CH*BC và AB*HC=HA*CA
b: góc AID=góc BIH=90 độ=góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔADI cân tại A
a: BC=căn 5^2+12^2=13cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/5=CD/12=(BD+CD)/(5+12)=13/17
=>BD=65/17cm; CD=156/17cm
b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
a: \(\widehat{ABC}+\widehat{ACB}=180^0-62^0=118^0\)
=>\(\widehat{IBC}+\widehat{ICB}=59^0\)
hay \(\widehat{BIC}=121^0\)
b: Xét ΔABC có
BD là phân giác
CE là phân giác
BD cắt CE tại I
Do đó: I là tâm đường tròn nội tiếp
=>AI là tia phân giác của góc BAC
=>\(\widehat{BAI}=31^0\)