cho hình chữ nhật ABCD có AB = 16cm và BC =12cm.Kẻ HB vuông góc với AC
a) cm : tam giác ABC đồng dạng với tam giác HBC
b) cm : AB2 = HB.AC
c) Tính AC và HB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại B và ΔHBC vuông tại H có
góc HCB chung
Do đó: ΔABC∼ΔHBC
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(AB^2=AH\cdot AC\)
c: \(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(HB=\dfrac{16\cdot12}{20}=9.6\left(cm\right)\)
1: BC=10cm
Xét ΔABC có BD là đường phân giác
nên AD/AB=DC/BC
=>AD/6=DC/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3(cm); BD=5(cm)
2: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{IAB}=\widehat{DCB}\)
Do đó: ΔABI\(\sim\)ΔCBD
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có \(\widehat{BAC}=\widehat{BHA}=90^o;\widehat{B}-\text{góc chung}\)
\(\Rightarrow \Delta ABC\sim\Delta HBA(g.g)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{BA}\Rightarrow AB^2=BH.BC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
AB^2+AC^2=12^2+16^2=20^2
BC=20^2 SUY RA tam giac ABC vuong tai A
xet tam giac AHBva tam giac AbC(A=h=90):
ABH la goc chung suy ra 2 tam giac dong dang
b,vi ti so dien h bang binh phung ti so dong dang suy ra dien tinh abc/dien tinh abh=ab/acsuy ra dien tinh abh=72
thoi ban roi lam the thoi
a) Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{HCB}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC(g-g)
Sửa đề: Đường cao BH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC
b: Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:
\(DC^2=BD^2+BC^2\)
\(\Leftrightarrow BD^2=25^2-15^2=400\)
hay BD=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:
\(\left\{{}\begin{matrix}BD^2=HD\cdot DC\\BC^2=HC\cdot DC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HD=16\left(cm\right)\\HC=9\left(cm\right)\end{matrix}\right.\)
a: Xét ΔABC vuông tại B và ΔHBC vuông tại H có
góc HCB chung
Do đó: ΔABC∼ΔHBC
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(AB^2=AH\cdot AC\)
c: \(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(HB=\dfrac{16\cdot12}{20}=9.6\left(cm\right)\)