tìm x
x(x-2009)-2010x+2009.2010=0
thank trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(4x^2-25=0\)
\(\Leftrightarrow4x^2=25\)
\(\Leftrightarrow x^2=\frac{25}{4}=\left(\pm\frac{5}{2}\right)^2\)
\(\Leftrightarrow x=\pm\frac{5}{2}\)
Vậy \(x\in\left\{\frac{5}{2};-\frac{5}{2}\right\}\)
c) x3 - 4x2 + 4x = 0
=> x3 - 2x2 - 2x2 + 4x = 0
=> x2.(x - 2) - 2x.(x - 2) = 0
=> (x - 2).(x2 - 2x) = 0
=> (x - 2).x.(x - 2) = 0
=> (x - 2)2.x = 0
=> (x - 2)2 = 0 hoặc x = 0
=> x - 2 = 0 hoặc x = 0
=> x = 2 hoặc x = 0
\(x.\left(x-2009\right)-2010x+2009.2010=0\)
\(x.\left(x-2009\right)-2010\left(x-2009\right)=0\)
\(\left(x-2009\right)\left(x-2010\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2009=0\\x-2010=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=2010\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=2009\\x=2010\end{cases}}\)
Ta có tất cả 2009 số hạng x
Từ 1 đến 2009 có tất cả 2009 số hạng
x. 1 + ( x+x+x+...+x+x ) + ( 1+2+3+..+2009) = 4038090
x. 1+ x . 2009 + (( 1+ 2009 ) x 2009 : 2) = 4038090
x . 1 + x . 2009 + 2019045 = 4038090
x . ( 1+ 2009 ) + 2019045 = 4038090
x . 2010 + 2019045 = 4038090
x . 2010 = 4038090 - 2019045
x . 2010 = 2019045
x = 2019045 : 2010
x = 1004,5
=> 2010.x + 1+2+3+...+2009 = 2009.2010
=>2010.x + 2009.2010 : 2 = 2009.2010
=> 2010 .x = 2009.2010:2
= 2019045
=> x = 1004,5
Thay 2010 = x + 1 vào P ( x ),ta có :
\(^{x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1}\)
= x10 - x10 - x9 + x9 + x8 - x8 - x7 + ... + x3 + x2 - x2 + x - 1
= x + 1
= 2009 + 1
= 2010
Thay 2010 = x+ 1 vào P( x) ,có :
\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1\)
= \(x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2+x-1\)
= x+1
= 2009 + 1
= 2010
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
X+(X+1)+(x+2)+++++++(x+2009)=2009.2010
=>2010.X+(1+2+3+...........+2009)=2009.2010
1+2+3+...........+2009 có 2009 số hạng
=>2010.X+[(2009+1).2009:2]=2009.2010
2010.X+(2010.2009:2)=2009.2010
2010.X=2009.2010-(2009.2010:2)=2010.2009:2
=>X=2009:2=1004,5
Vậy X=1004,5
\(x\left(x-2009\right)-2010x+2009\times2010=0\)
\(x^2-2009x-2010x+2009\times2010=0\)
\(x\left(x-2010\right)-2009\left(x-2010\right)=0\)
\(\left(x-2009\right)\left(x-2010\right)=0\)
nên x - 2009 = 0
x = 2009
x-2010=0
x=2010