Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) Sửa đề : 5x3 + x2 - 4x + 9 = 0
<=>( 5x3 + 5 ) + (x2 - 4x +4)=0
<=> 5(x3 + 1) + (x-2)2 = 0
<=> 5(x+1)(x2 - x +1) + (x+2)2 =0
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = -3 hoặc x = 2
a) \(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)
b) \(3x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
c) \(4x\left(x+3\right)-x^2+9=0\)
\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)
f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)
g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)
a) 4x3 - 9x = 0
<=> x( 4x2 - 9 ) = 0
<=> x( 2x - 3 )( 2x + 3 ) = 0
<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0
<=> x = 0 hoặc x = ±3/2
b) 3x( x - 2 ) - 5x + 10 = 0
<=> 3x( x - 2 ) - 5( x - 2 ) = 0
<=> ( x - 2 )( 3x - 5 ) = 0
<=> x - 2 = 0 hoặc 3x - 5 = 0
<=> x = 2 hoặc x = 5/3
c) 4x( x + 3 ) - x2 + 9 = 0
<=> 4x( x + 3 ) - ( x2 - 9 ) = 0
<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0
<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0
<=> ( x + 3 )( 4x - x + 3 ) = 0
<=> ( x + 3 )( 3x + 3 ) = 0
<=> x + 3 = 0 hoặc 3x + 3 = 0
<=> x = -3 hoặc x= -1
d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )
<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0
<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0
<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0
<=> ( x - 4 ).3x = 0
<=> x - 4 = 0 hoặc 3x = 0
<=> x = 4 hoặc x = 0
e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )
<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0
<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0
<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0
<=> ( 4x - 5 )( 2x + 4 ) = 0
<=> 4x - 5 = 0 hoặc 2x + 4 = 0
<=> x = 5/4 hoặc x = -2
f) ( x + 1/5 )2 = 64/9
<=> ( x + 1/5 )2 = ( ±8/3 )2
<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3
<=> x = 37/15 hoặc x = -43/15
g) 9( x + 2 )2 = ( x + 3 )2
<=> 32( x + 2 )2 - ( x + 3 )2 = 0
<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0
<=> ( 3x + 6 )2 - ( x + 3 )2 = 0
<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0
<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0
<=> ( 2x + 3 )( 4x + 9 ) = 0
<=> 2x + 3 = 0 hoặc 4x + 9 = 0
<=> x = -3/2 hoặc x = -9/4
a) \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\)
b) \(\left(x+8\right)^2=121\)
\(\Leftrightarrow\left(x+8\right)^2-121=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+19\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)
Vậy \(x\in\left\{-19;3\right\}\)
c) \(x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{0;2\right\}\)
d) \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Bài làm:
a) \(4x^2-7x+3=0\)
\(\Leftrightarrow\left(4x^2-4x\right)-\left(3x-3\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=1\end{cases}}\)
b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)(Do viết PT lỗi nên bạn tự giải nha)
c) \(6x^2-4x-2=0\)
\(\Leftrightarrow\left(6x^2-6x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow6x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow2\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Sa
a) \(4x^2-7x+3=0\)
Dễ dàng nhận thấy a + b + c = 4 + ( -7 ) + 3 = 0
Vậy nên phương trình đã cho có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{3}{4}\end{cases}}\)
Vậy \(S=\left\{1;\frac{3}{4}\right\}\)
b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-4=0\\x^2-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4\left(x^2-1\right)=0\\x\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\\x-1=0\Leftrightarrow x=1\\x=0\end{cases}}\)( chỗ này bạn thay bằng dấu hoặc nhé )
Vậy \(S=\left\{0;\pm1\right\}\)
c) \(6x^2-4x-2=0\)
Dễ dàng nhận thấy a + b + c = 6 + ( -4 ) + ( -2 ) = 0
Vậy nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{-2}{6}=-\frac{1}{3}\end{cases}}\)
Vậy \(S=\left\{1;-\frac{1}{3}\right\}\)
b, \(4x^2-25=0\)
\(\Leftrightarrow4x^2=25\)
\(\Leftrightarrow x^2=\frac{25}{4}=\left(\pm\frac{5}{2}\right)^2\)
\(\Leftrightarrow x=\pm\frac{5}{2}\)
Vậy \(x\in\left\{\frac{5}{2};-\frac{5}{2}\right\}\)
c) x3 - 4x2 + 4x = 0
=> x3 - 2x2 - 2x2 + 4x = 0
=> x2.(x - 2) - 2x.(x - 2) = 0
=> (x - 2).(x2 - 2x) = 0
=> (x - 2).x.(x - 2) = 0
=> (x - 2)2.x = 0
=> (x - 2)2 = 0 hoặc x = 0
=> x - 2 = 0 hoặc x = 0
=> x = 2 hoặc x = 0