Chứng minh rằng:
P = 1+ \(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\notin N\)
Giải giùm mik nhé mọi ng` ai giải hay mik sẽ hậu tạ hậu hĩnh ^^ làm nhanh nhé khoảng nửa tiếng sau mik lấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghỉ zậy nè ngọc ơi !!!
P=1+ 1/2 +1/3 +1/4 +....+1/100 < 0/1 +0/2 +0/3 +...+ 0/100
=>1+ 1/2 +1/3 +1/4 +....+1/100 < 0
=> 1+ 1/2 +1/3 +1/4 +....+1/100 \(\notin\)N
Gọi giao điểm của BN và CE là O. Giao điểm của AO và BC là M'. Ta có:
Tam giác OEA và tam giác OEB có chung đường cao hạ từ đỉnh O nên: \(\frac{S_{OEA}}{S_{OEB}}=\frac{AE}{EB}\)
Tam giác CEA và tam giác CEB có chung đường cao hạ từ đỉnh C nên: \(\frac{S_{CEA}}{S_{CEB}}=\frac{AE}{EB}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{AE}{EB}=\frac{S_{CEA}}{S_{CEB}}=\frac{S_{OEA}}{S_{OEB}}=\frac{S_{CEA}-S_{OEA}}{S_{CEB}-S_{OEB}}=\frac{S_{COA}}{S_{BOC}}\)(1)
Tương tự ta có:
\(\frac{CN}{NA}=\frac{S_{BNC}}{S_{BNA}}=\frac{S_{ONC}}{S_{ONA}}=\frac{S_{BNC}-S_{ÓNC}}{S_{BNA}-S_{ONA}}=\frac{S_{BOC}}{S_{AOB}}\) (2)
\(\frac{BM'}{M'C}=\frac{S_{AM'B}}{S_{AM'C}}=\frac{S_{OM'B}}{S_{OM'C}}=\frac{S_{AM'B}-S_{OM'B}}{S_{AM'C}-S_{OM'C}}=\frac{S_{AOB}}{S_{COA}}\) (3)
Từ (1), (2), (3) suy ra:
\(\frac{AE}{AB}.\frac{CN}{NA}.\frac{BM'}{M'C}=\frac{S_{COA}}{S_{BOC}}.\frac{S_{BOC}}{S_{AOB}}.\frac{S_{AOB}}{S_{COA}}=1\) (*)
Theo giả thiết đề bài ta có: \(\frac{AE}{AB}.\frac{CN}{NA}.\frac{BM}{MC}=1\)(**)
Từ (*), (**) \(\Rightarrow\frac{AE}{AB}.\frac{CN}{NA}.\frac{BM'}{M'C}=\frac{AE}{AB}.\frac{CN}{NA}.\frac{BM}{MC}\)
\(\Leftrightarrow\frac{BM'}{M'C}=\frac{BM}{MC}\) \(\Leftrightarrow\frac{BM'}{M'C}+1=\frac{BM}{MC}+1\)
\(\Leftrightarrow\frac{BM'+M'C}{M'C}=\frac{BM+MC}{MC}\) \(\Leftrightarrow\frac{BC}{M'C}=\frac{BC}{MC}\)
\(\Leftrightarrow M'C=MC\)
\(\Rightarrow M'\equiv M\) \(\Rightarrow AM'\equiv AM\)
Vậy AM, BN, CE cắt nhau tại O khi và chỉ khi \(\frac{AE}{AB}.\frac{CN}{NA}.\frac{BM}{MC}=1\)\
P/S: Bài toán trên thực chất là bài toán chứng minh định lý đảo Ceva
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\)
\(=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{3.7}+\frac{1}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}+0+0+...+0\)
\(=\frac{7}{8}\)
Ta có:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)\(< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)\(=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy ............
Ta có: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 3/31 + 3/47 < 1/3 + 3/30 + 3/45
= 1/3 + 1/10 + 1/15 = 1/3 + (1/30) * (3+2) = 1/3 + (1/0) * 5 = 1/3 + 1/6
= (1/6) * (2+1) = (1/6) * 3 = 1/2.
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/2.
Ủng hộ mk nha mina^^
5/15+14/25-12/9+2/7+11/25=(5/15+2/7)+(14/25+11/25)-12/9=17/35+1-12/9=16/105
=\(\left(\frac{5}{15}-\frac{12}{9}\right)+\left(\frac{14}{25}+\frac{11}{15}\right)+\frac{2}{7}\)
=\(\left(\frac{1}{3}-\frac{4}{3}\right)+1+\frac{2}{7}\)
=\(\frac{-3}{3}+1+\frac{2}{7}=-1+1+\frac{2}{7}\)
=\(\frac{2}{7}\)
P=1+1/100
P=101/100
Vì N là số tự nhiên và 101/100 là phân số nên 101/100 \(\notin\)N
Vậy P \(\notin\)N
Thừa số phụ của các thừa số là : n1,n2,n3,n4,...,n99 và mẫu số chung là 26,34,...
=> A = \(\frac{n1+n2+n3+...+n99}{2^6.3^4...97}\)
Ta thấy mẫu số chung của A là tích cac thừa số nguyên tố trong đó có thừa số 2 là 26 với số mũ lớn nhất
Đặt 26. H (trong đó H là tích của các thừa số nguyên tố lẻ và thỏa mãn bé hơn 100 ). Trong các thừa số phụ trên, có thừa số phụ của phân số \(\frac{1}{64}=\frac{1}{2^6}\) là số lẻ (còn lại là thừa số phụ là số chẵn) => Khi thực hiên ta có mẫu số chẵn, tử số lẻ=> A không phải là số tự nhiên
Tổng A \(\notin N\)
K nha