phân tích thành nhân tử
a,9x - 4
b,x - 4 căn x + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2a-4b=2\left(a-2b\right)\)
c) \(2ax-2ay+2a=2a\left(x-y+1\right)\)
e) \(3xy\left(x-4\right)-9x\left(4-x\right)=3x\left(x-4\right)\left(y+3\right)\)
b,d xem lại đề
Lời giải:
a.
\(5+\sqrt{3}+5\sqrt{3}+3=(5+5\sqrt{3})+(\sqrt{3}+3)\)
\(=5(1+\sqrt{3})+\sqrt{3}(1+\sqrt{3})=(1+\sqrt{3})(5+\sqrt{3})\)
b.
\(\sqrt{x}+\sqrt{y}+\sqrt{xy}+1=(\sqrt{x}+\sqrt{xy})+(\sqrt{y}+1)\)
\(=\sqrt{x}(1+\sqrt{y})+(\sqrt{y}+1)=(\sqrt{y}+1)(\sqrt{x}+1)\)
c.
$x-4\sqrt{x}+3=(x-\sqrt{x})-(3\sqrt{x}-3)$
$=\sqrt{x}(\sqrt{x}-1)-3(\sqrt{x}-1)$
$=(\sqrt{x}-1)(\sqrt{x}-3)$
a: =64x^4+16x^2y^2+y^4-16x^2y^2
=(8x^2+y^2)^2-(4xy)^2
=(8x^2+y^2-4xy)(8x^2+y^2+4xy)
b: =x^8+2x^4+1-x^4
=(x^4+1)^2-x^4
=(x^4-x^2+1)(x^4+x^2+1)
=(x^4-x^2+1)(x^4+2x^2+1-x^2)
=(x^4-x^2+1)(x^2+1-x)(x^2+x+1)
c: =(x+1)(x^2-x+1)+2x(x+1)
=(x+1)(x^2-x+1+2x)
=(x+1)(x^2+x+1)
d: =(x^2-1)(x^2+1)-2x(x^2-1)
=(x^2-1)(x^2-2x+1)
=(x-1)^2*(x-1)(x+1)
=(x+1)(x-1)^3
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
\(x^6-x^4-9x^3+9x^2\)
\(\left(x^6-x^4\right)-\left(9x^3-9x^2\right)\)
\(x^4\left(x^2-x\right)-9x\left(x^2-x\right)\)
\(\left(x^2-x\right)\left(x^4-9x\right)\)
\(9x^2-4\left(x-1\right)^2\)
\(=\left[3x+2\left(x-1\right)\right]\left[3x-2\left(x-1\right)\right]\)
\(=\left[3x+2x-2\right]\left[3x-2x+2\right]\)
\(=\left(5x-2\right)\left(x+2\right)\)
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)