Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(5+\sqrt{3}+5\sqrt{3}+3=(5+5\sqrt{3})+(\sqrt{3}+3)\)
\(=5(1+\sqrt{3})+\sqrt{3}(1+\sqrt{3})=(1+\sqrt{3})(5+\sqrt{3})\)
b.
\(\sqrt{x}+\sqrt{y}+\sqrt{xy}+1=(\sqrt{x}+\sqrt{xy})+(\sqrt{y}+1)\)
\(=\sqrt{x}(1+\sqrt{y})+(\sqrt{y}+1)=(\sqrt{y}+1)(\sqrt{x}+1)\)
c.
$x-4\sqrt{x}+3=(x-\sqrt{x})-(3\sqrt{x}-3)$
$=\sqrt{x}(\sqrt{x}-1)-3(\sqrt{x}-1)$
$=(\sqrt{x}-1)(\sqrt{x}-3)$
a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)
=x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)
=(x^4-4x^3+5x^2-4x+4)(x-1)
=[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)
=(x^3-2x^2+x-2)(x-2)(x-1)
=(x^2+1)(x-2)^2(x-1)
=a^4+4*a^2*b^2+4b^4-4*a^2*b^2
=(a^2+2b^2)^2-(2*a*b)^2
=(a^2+2b^2+2*a*b)*(a^2+2b^2-2*a*b)
=a^4+4*a^2*b^2+4b^4-4*a^2*b^2
=(a^2+2b^2)^2-(2*a*b)^2
=(a^2+2b^2+2*a*b)*(a^2+2b^2-2*a*b)
\(x\sqrt{y}-y\sqrt{x}=\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(x\sqrt{y}-y\sqrt{x}\right)+\left(x-y\right)\)
\(=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}+\sqrt{y}\right)\)