K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

Vế phải là gì kia ạ?

17 tháng 4 2021

ab/b+c + bc/ c+a + ca/ b+c = ca/ b+c + ab/ c+a + bc/a+b

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
NV
21 tháng 9 2021

Với x;y dương, ta có BĐT:

\(x^5+y^5\ge x^2y^2\left(x+y\right)\)

Thật vậy, BĐT tương đương:

\(x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (luôn đúng)

Áp dụng:

\(\Rightarrow A\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}+\dfrac{bc}{b^2c^2\left(b+c\right)+bc}+\dfrac{ca}{c^2a^2\left(c+a\right)+ca}\)

\(A\le\dfrac{1}{ab\left(a+b\right)+1}+\dfrac{1}{bc\left(b+c\right)+1}+\dfrac{1}{ca\left(c+a\right)+1}\)

\(A\le\dfrac{abc}{ab\left(a+b\right)+abc}+\dfrac{abc}{bc\left(b+c\right)+abc}+\dfrac{abc}{ca\left(c+a\right)+abc}=\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=1\)

NV
23 tháng 1 2021

a.

Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)

\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)

Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

b.

Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế với vế:

\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)

27 tháng 12 2021

mới lớp 7 a ới