CMR :
x^2 + 2xy + 2y^2 + y + 1/ 2 > 0 ( với mọi x; y )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)
\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)
\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)
nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)
b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)
nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)
\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)
\(x^2+2xy+2y^2+y+\frac{1}{2}\)
\(=x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
\(=\left(x+y\right)^2+y^2+y+\frac{1}{2}\)
Có : \(\left(x+y\right)^2\ge0\)
\(y^2\ge y\ge0\Rightarrow y^2+y\ge0\)
\(\frac{1}{2}>0\)
\(\Rightarrow x^2+2xy+2y^2+y+\frac{1}{2}>0\) với mọi x y
Ta có
\(x^2+2xy+2y^2+y+\frac{1}{2}\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
\(=\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)
Mà \(\begin{cases}\left(x^2+2xy+y^2\right)\ge0\\\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)\ge0\\\frac{1}{4}>0\end{cases}\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}>0\)
(1)
(x+1)(x-7)+17>0
<=>x^2-6x+9+1>0
<=>(x-3)^2+1>0(dpcm)
..
(7)
-y^2+4y-4-|x+1|≤0
<=>-(y-2)^2-|x+1|≤0
sum 2 so khong duong ko the la so (+)=>dpcm
\(x^2+2y^2-2xy+2x-4y+2=0\)
\(\Rightarrow x^2-2xy+y^2+2\left(x-y\right)+1+y^2-2y+1=0\)
\(\Rightarrow\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2=0\)
\(\Rightarrow\left(x-y+1\right)^2+\left(y-1\right)^2=0\)
=>................
1.(x+1)(x-7)+17=(x-3)2+1>0
2.-20-(x-5)(x+3)=-34-(x-1)2<0
3.-2(x+3)-(x-2)(x+2)=-(x+1)2-1<0
4.x2+y2+2x+2y+3=(x+1)2+(y+1)2+1>0
5.2x2+2x+y2+2y+5=2(x+1/2)2+(y+1)2+2>0
6.2x2+2y2+2xy+2x+4y+6=(x+y)2+(x+1)2+(y+2)2+1>0
7.-y2+4y-4-/x+1/=-(y-2)2-/x+1/≤0
\(x^2+2xy+2y^2+y+\frac{1}{2}\)
\(=x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
\(=\left(x+y\right)^2+y^2+y+\frac{1}{2}\)
Có: \(\left(x+y\right)^2\ge0\)
\(y^2\ge y\ge0\Rightarrow y^2+y\ge0\)
\(\frac{1}{2}>0\)
\(\Rightarrow x^2+2xy+2y^2+y+\frac{1}{2}>0\) với mọi x
xét vế trái: \(x^2+2xy+2y^2+y+\frac{1}{2}\) =\(x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
= \(\left(x^2+2xy+y^2\right)+\left(y^2+y+\frac{1}{2}\right)\)
= \(\left(x+y\right)^2+\left(y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)\)
= \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}\)
vì \(\left(x+y\right)^2>=0\) và \(\left(y+\frac{1}{2}\right)^2>=0\) => \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2>=0\)
mà 1/4 >0 => \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}>0\)