Cho \(\frac{x}{3}=\frac{y}{5}\)
Tìm x và y biết x.y=135.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k
=> x.y=3k .5k=15.k^2=135
=k^2=135:15=9=3^2 hoặc (-3)^2
th1:k=3=> x=9;y=15
th2:k=-3=>x=-9;y=-15
#)Giải :
Đặt \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
\(\Rightarrow xy=3k.5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)
\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)
Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)
Giải.
Theo tỉ lệ thức thì \(x\times5=y\times3=135\)
Vậy \(x=\frac{135}{5}=27;y=\frac{135}{3}=45\)
Bài 2 : Ta có :
\(\frac{a-b}{b}=\frac{a}{b}-\frac{b}{b}=\frac{a}{b}-1;\frac{c-d}{d}=\frac{c}{d}-\frac{d}{d}=\frac{c}{d}-1\)
Mà \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a-b}{b}=\frac{c-d}{d}\)
trong sách giáo khoa lớp 7 có 1 bài tương tự như thế, đặt k ra
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
Bài 1:
\(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\) và x + y - z = 10
\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\)
\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}\) = \(\frac{z}{15}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2
=> \(\frac{x}{8}\) = 2 --> x = 16
\(\frac{y}{12}=2\) --> y = 24
\(\frac{z}{15}=2\) --> z = 30
Vậy x = 16 ; y = 24 ; z = 30
Bài 2:
\(\frac{x}{2}=\frac{y}{5}\) và x . y = 10
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có: x = 2 . k ; y = 5 . k
x . y = 10 => 2k . 5k = 10
=> 10 . \(^{k^2}\) = 10
=> \(^{k^2}\) = 1 --> k = -1 hoặc k = 1
k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5
k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5
Bài 1:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Bài 2:
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
Có: xy=10
\(\Leftrightarrow2k\cdot5k=10\)
\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
Với k=1 thì x=2 ; y=5
Với k=-1 thì x=-2 ; y=-5
ta có \(\frac{x\left(x.y\right)}{y\left(x.y\right)}=\frac{3}{10}:\left(-\frac{3}{50}\right)=-5=\frac{x}{y}\)
\(x=-5y\)suy ra \(-5\left(-5y-y\right)=\frac{3}{10}\)suy ra \(30y^2=\frac{3}{10}\)
nên \(y=\frac{1}{10}\)hoặc \(y=-\frac{1}{10}\)
+) Với \(y=\frac{1}{10}\)suy ra \(x=-5.\frac{1}{10}=-\frac{1}{2}\)
+) Với \(y=-\frac{1}{10}\)suy ra \(x=-5.\left(-\frac{1}{10}\right)=\frac{1}{2}\).
Chúc làm bài may mắn
\(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(x\cdot y=140\)
\(\Rightarrow5k\cdot7k=140\)
\(\Rightarrow35k^2=140\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(k=2\Rightarrow\hept{\begin{cases}x=2\cdot5=10\\y=2\cdot7=14\end{cases}}\)
\(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot5=-10\\y=-2\cdot7=-14\end{cases}}\)
\(7x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\end{cases}}\)
\(\Rightarrow x\cdot y=3k\cdot7k=2100\)
\(\Rightarrow21k^2=2100\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}x=10\cdot3=30\\y=10\cdot7=70\end{cases}}\)
\(k=-10\Rightarrow\hept{\begin{cases}x=-10\cdot3=-30\\y=-10\cdot7=-70\end{cases}}\)
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
Đặt: \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow x=3k\)
\(y=5k\)
\(xy=3k.5k=15k^2=135\Rightarrow k=9\Rightarrow k=\sqrt[2]{9}=3\)
Vậy: \(x=3.3=9\)
\(y=3.5=15\)