K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

\(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(x\cdot y=140\)

\(\Rightarrow5k\cdot7k=140\)

\(\Rightarrow35k^2=140\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(k=2\Rightarrow\hept{\begin{cases}x=2\cdot5=10\\y=2\cdot7=14\end{cases}}\)

\(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot5=-10\\y=-2\cdot7=-14\end{cases}}\)

\(7x=3y\)

\(\Rightarrow\frac{x}{3}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\end{cases}}\)

\(\Rightarrow x\cdot y=3k\cdot7k=2100\)

\(\Rightarrow21k^2=2100\)

\(\Rightarrow k^2=100\)

\(\Rightarrow k=\pm10\)

\(k=10\Rightarrow\hept{\begin{cases}x=10\cdot3=30\\y=10\cdot7=70\end{cases}}\)

\(k=-10\Rightarrow\hept{\begin{cases}x=-10\cdot3=-30\\y=-10\cdot7=-70\end{cases}}\)

12 tháng 2 2020

4x=3y và 3x-y=21

13 tháng 10 2016

a) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=5k\)

\(\Rightarrow xy=2k.5k=10k^2\)

\(\Rightarrow10k^2=10\)

\(\Rightarrow k^2=\frac{10}{10}=1\Rightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với \(k=1\)

\(\Rightarrow x=2k=2.1=2\)

\(\Rightarrow y=5k\Rightarrow y=5.1=5\)

Với \(k=-1\)

\(\Rightarrow x=2k=-1.2=-2\)

\(\Rightarrow y=5k=-1.5=-5\)

 

13 tháng 10 2016

b) \(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)

  • \(x=4.7=28\)
  • \(y=4.3=12\)

Vậy: \(x=28,y=12\)

4 tháng 8 2020

Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)(1)

Sửa : xy = 112 (2)

Thay (1) vào (2) ta có 

4k.7k = 112

=> 28k2 = 112

=> k2 = 4

=> k = \(\pm\)

Khi k = 2 => x = 8 ; y = 14

Khi k = -2 => x = -8 ; y = -14

Vậy các cặp (x;y) thỏa mãn bài toán là (8;14) ; (-8;-14)

b) Có : a + b = -21

Ta có \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)(dãy tỉ số bằng nhau)

=> x = -6 ; y = - 15

c) Ta có x - y = 16

Lại có : \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)(dãy tỉ số bằng nhau)

=> x = -12 ; y = - 28

d) Ta có x + y = - 22

Lại có \(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=2\)

=> x = -6 ; y = -16

4 tháng 8 2020

a. Sửa đề : x/4 = y/7 và x + y = 142

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{142}{11}\)

Suy ra :

+) \(\frac{x}{4}=\frac{142}{11}\Leftrightarrow x=\frac{568}{11}\)

+) \(\frac{y}{7}=\frac{142}{11}\Leftrightarrow y=\frac{994}{11}\)

b. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

Suy ra :

+) \(\frac{x}{2}=-3\Leftrightarrow x=-6\)

+) \(\frac{y}{5}=-3\Leftrightarrow y=-15\)

c. \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

Suy ra :

+) \(\frac{x}{3}=-4\Leftrightarrow x=-12\)

+) \(\frac{y}{7}=-4\Leftrightarrow y=-28\)

d. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=-2\)

Suy ra :

+) \(\frac{x}{3}=-2\Leftrightarrow x=-6\)

+) \(\frac{y}{8}=-2\Leftrightarrow y=-16\)

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

15 tháng 1 2017

a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3  

4 tháng 10 2016

a) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)

Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)

Có: x.y=84

\(\Rightarrow3k\cdot7k=84\)

\(\Rightarrow k^2=4\Rightarrow\left[\begin{array}{nghiempt}k=2\\k=-2\end{array}\right.\)

Với k=2 thì x=6 ;y=14

Với k=-2 thì x=-6 ;y =-14

b) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{5y-2x}{5\cdot7-2\cdot3}=\frac{-4}{29}\)

=> \(\begin{cases}x=-\frac{12}{29}\\y=-\frac{28}{29}\end{cases}\)

c) \(2x=3y=5z\)

\(\Leftrightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tc của dãy tỉ số bằng nhau ta co:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}\)

thiếu đề

4 tháng 10 2016

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}=\frac{10}{17}\)

=>\(\begin{cases}x=\frac{150}{17}\\y=\frac{100}{17}\\z=\frac{60}{17}\end{cases}\)

@VỘI VÀNG QUÁ

đặt x/3=y/=k(k khác 0) =>x=3k;y=7k

=>x.y=3k.7k=21.k^2=84

=>k^2=4=(2)^2 hoặc(-2)^2

th1:k=2=> x=6;y=14

th2:k=-2 =>x=-6;y=-14

14 tháng 6 2019

Đặt \(\frac{x}{3}=\frac{y}{7}=k\)   ta có :

\(x=3k\) ;\(y=7k\)

Vì \(x.y=84\Rightarrow3k.7k=21k^2=84\)

\(\Rightarrow k^2=4=2^2\)

\(\Rightarrow\orbr{\begin{cases}k=-2\\k=2\end{cases}}\)

+TH1: \(k=-2\Rightarrow\hept{\begin{cases}x=-6\\y=-14\end{cases}}\)

+TH2: \(k=2\Rightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

Vậy (x,y) = {(-6,-14);(6,14)}

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)