Cho tam giác ABC. M là điểm chính giữa của cạnh BC, N là điểm chính giữa của cạnh AC. Lấy K là điểm chính giữa của đoạn thẳng BM. Hai đoạn AK và BN cắt nhau tại G. Tính diện tích tứ giác MNGK, biết diện tích tam giác ABG là 12.5cm\(^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án+Giải thích các bước giải:
Diện tích tam giác bằng diện tích tam giác do chung chiều cao từ , đáy
Do đó diện tích là:
Diện tích tam giác bằng diện tích tam giác do chung chiều cao từ , đáy
Do đó diện tích là:
Nối với
Diện tích tam giác bằng diện tích tam giác do chung chiều cao từ , đáy
Diện tích tam giác bằng diện tích tam giác do chung chiều cao từ , đáy
Diện tích tam giác Diện tích tam giác Diện tích tam giác
lần Diện tích tam giác
Hay Diện tích tam giác lần Diện tích tam giác
Do đó chiều cao từ xuống đáy của tam giác bằng bằng hai lần chiều cao từ xuống của tam giác
Đó cũng là chiều cao của tam giác và , đáy chung nên diện tích tam giác bằng hai lần diện tích tam giác . Hai tam giác này lại có chung chiều cao từ xuống nên đáy bằng nửa đáy
xét tam giác AMK và tam giác MKB có:
chung chiều cao hạ từ K xuống AB
đáy MA=MB
=> Stam giác AMK=S tam giác MKB
mặt khác 2 tam giác này chung đáy MK nên
chiều cao hạ từ A xuống CM = chiều cao hạ từ B xuống CM
*xét tam giác ACK và BCK có
chung đáy CK
chiều cao hạ từ A=chiều cao hạ tứ B xuống CM
=>s tam giác ACK=S tam giác BCK
*cũng theo cách chững minh đó,có Stam giác BKA=1/2 S tam giác BKC
=>stam fiác BKC=S tam giác ACK=2S tam giác ABK=2x42=84 (dm^2)
BÀI 2
*xét tam giác EBD và CEB có
chung chiều cao hạ từ E xuống CB
đáy DC=1/2CB
=>Stam giác EBD=1/2 Stam giác ECB
*xét tam giác EDB và AEB có
chung chiều cao hạ từ B xuống AD
đáy ED=1/2AE
=>Stam giác DEB=1/2 Stam giác AEB
Do đó Stam giác EAB=Stam giác ECB
Mặt khác 2 tam giác này chung đáy EB
=>chiều cao hạ từ A=chiều cao hạ từ C xuống EB
*xét tam giác AEG và tam giác CEG có
chung đáy EG
chiều cao hạ từ A=chiều cao hạ từ C xuống EG
=>Stam giác AEG=Stam giác CEG
Mặt khác chúng có chung chiều cao hạ từ E xuống AC
nên đáy AG=GC
=>G là điểm chính giữa của AC
Ta có: SABN = 1/2SBCN
(AN=1/2NC, chung đường cao kẻ từ B).
Hai tam giác này lại có chung cạnh BN nên hai đường cao kẻ từ A và từ C xuống BN bằng nhau.
Hai đường cao này cũng là hai đường cao của hai tam giác ABK và CBK có cạnh đáy chung là BK.
Nên SABK = 1/2SCBK. (1)
Tương tự ta lại có SCBK = SACK (2)
Từ (1) và (2) ta được
SABK = 1/2SACK
Vậy SACK = SABK x 2 = 42 x 2 = 84 (dm2)
Xét 2△ AKM và KBM
- Do có cùng độ dài đáy và chung chiều cao hạ từ K xuống AB nên 2△ này có diện tích bằng nhau. (1)
Xét 2△ ACM và CMB
- Do có cùng độ dài đáy và chung chiều cao hạ từ C xuống AB nên 2△ này có diện tích bằng nhau. (2)
Từ (1) và (2), ta suy ra \(\dfrac{AKC}{CBK}=\dfrac{1}{1}\) (bằng nhau)
Xét 2△ CBK và ABK
- Do có chung đáy BK và chiều cao hạ từ A = \(\dfrac{1}{2}\) chiều cao hạ từ C xuống BK nên ⇒ \(\dfrac{ABK}{CBK}=\dfrac{1}{2}\)
Diện tích của AKC là: 21 x 2 = 42 (dm2)
Đáp số: 42dm2
Tham khảo bài sau nhé:
https://mathx.vn/hoi-dap-toan-hoc/142991.html
Ta dùng tỉ số diện tích:
Ta có: \(\frac{S_{ABK}}{S_{ABC}}=\frac{BK}{BC}=\frac{1}{4};\frac{S_{BMN}}{S_{ABC}}=\frac{S_{BMN}}{S_{BCN}}.\frac{S_{BCN}}{S_{ABC}}=\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
Vậy \(S_{ABK}=S_{BMN}\Rightarrow S_{ABG}+S_{BGK}=S_{GKMN}+S_{BGK}\)
\(\Rightarrow S_{ABG}=S_{GKMN}=12,5\left(cm^2\right).\)