Cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2016^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right)..................\left(1^2-2016^6\right)}{2^2.3^2.4^2...........2016^2}\)
\(\Leftrightarrow A=\frac{\left(1-2\right)\left(1+2\right)\left(1-3\right)\left(1+3\right)........\left(1-2016\right)\left(1+2016\right)}{2^2.3^2..........2016^2}\)
\(\Leftrightarrow A=\frac{\left(-1\right)\left(3\right)\left(-2\right)\left(4\right).............\left(-2015\right)\left(1017\right)}{\left(2.3.4......2016\right)\left(2.3.4.2016\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)......\left(-2015\right)\right]\left(3.4.....2017\right)}{\left(2.3.4....2016\right)\left(2.3.4...2017\right)}\)
\(\Leftrightarrow A=-\frac{1}{2016.2}=-\frac{1}{4032}>-\frac{2}{2016}\)
\(\Leftrightarrow A=-\frac{2}{2016}\)
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right)..........\left(1^2-2016^2\right)}{\left(2.3....2016\right)\left(2.3...2016\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)\left(3\right)\left(-2\right)\left(4\right)....\left(-2015\right)\left(2017\right)}{\left(2.3....2016\right)\left(2.3...2016\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right).....\left(-2015\right)\right]\left(3.4.5...2017\right)}{\left(2.3.....2016\right)\left(2.3.4....2016\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2017}{2016}=-\frac{2017}{2016}< \frac{1}{2}\)
=> A<1/2
\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)
A>1/2
Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)
\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)
\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)
\(=\frac{101}{2\cdot100}\)
\(=\frac{101}{200}>\frac{1}{2}\)
Ta có
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)
=> A<-1/2
\(A=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(A=-\left(\frac{1.3}{2.2}\right).\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2....99}{2.3...100}\right).\left(\frac{3.4....101}{2.3....100}\right)\)
\(A=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)
\(A=\frac{-101}{200}>\frac{-1}{2}\)