CMR: \(\frac{x}{y}+\frac{y}{x}\ge2\), với x, y nguyên dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)
\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)
Chứng minh tương tự:
\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)
Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra
Dùng Bđt Cauchy: \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Chơi tổng quát luôn tìm GTNN &LN \(P=\frac{x}{y}+\frac{y}{x}\) với mọi x,y khác không
đặt x/y=t => y/x=1/t
\(P=t+\frac{1}{t}=\frac{t^2+1}{t}\Leftrightarrow t^2-pt+1=0\) (1)
\(\left(1\right)\Leftrightarrow t^2+pt+\frac{p^2}{4}=\frac{p^2}{4}-1\)
\(\Leftrightarrow\left(t-\frac{p}{2}\right)^2=\frac{p^2-4}{4}\)
VT là bình phương => để tồn tại (t) VP >=0
\(\Leftrightarrow\frac{p^2-4}{4}\ge0\Leftrightarrow p^2-4\ge0\Leftrightarrow p^2\ge4\Rightarrow!p!\ge2\Rightarrow\left[\begin{matrix}P\le-2\\P\ge2\end{matrix}\right.\)
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)
Cộng vế với vế:
\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)
Dấu "=" xảy ra khi \(x=y=z\)
\(\sqrt{\frac{x}{y+z}}=\frac{2x}{2\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)
Tương tự: \(\sqrt{\frac{y}{z+x}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{z+x}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" không xảy ra
\(VT=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=2+\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\)
Bài toán trở thành \(\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\ge\frac{x+y+z}{3\sqrt{xyz}}\)
Áp dụng bất đẳng thức AM-GM:
\(\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\ge3\sqrt[3]{\frac{z^3}{xyz}}=\frac{3z}{\sqrt[3]{xyz}}\)
Tương tự:
\(\frac{y}{x}+\frac{y}{z}+\frac{y}{y}\ge\frac{3y}{\sqrt[3]{xyz}}\)
\(\frac{x}{z}+\frac{x}{y}+\frac{x}{x}\ge\frac{3x}{\sqrt[3]{xyz}}\)
\(\Leftrightarrow VT+3\ge3+\frac{3}{\sqrt[3]{xyz}}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{3\left(x+y+z\right)}{\sqrt[3]{xyz}}\)\(\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Is it true?
\(\frac{1}{1+x}\ge1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự: \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\) ; \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân vế với vế:
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}< 8\) (đpcm)
Chắc bạn ghi sai đề bài :)
Áp dụng BĐT AM - GM:
\(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2\left(1-x^2\right)}}\ge2x^3\)
Tương tự ta CM được:
\(\frac{y^2}{\sqrt{1-y^2}}=\frac{y^3}{\sqrt{y^2\left(1-y^2\right)}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}=\frac{z^3}{\sqrt{z^2\left(1-z^2\right)}}\ge2z^3\)
Cộng vế với vế 3 bất đẳng thức trên, ta được:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)
bạn xem lại đề xem, mình làm thấy dấu ''='' không xảy ra
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{2x^3}{2x\sqrt{1-x^2}}\ge\frac{2x^3}{x^2+1-x^2}=2x^3\)
Tương tự: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế với vế:
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
Dấu "=" ko xảy ra nên BĐT sai, vế trái lớn hơn vế phải 1 cách tuyệt đối.
BĐT đúng là: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
Đặt biểu thức trên là A
\(A=x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\)
\(=\left(x-y\right)^2+\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}+2xy\ge2\sqrt{\left(x-y\right)^2\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}}+2xy\)
\(=2\sqrt{\left(xy-1\right)^2}+2xy\)
\(=2\left|xy-1\right|+2xy\)
Áp dụng bđt Cô si
- Nếu thấy \(xy\ge1\Rightarrow A\ge2xy-2+2xy=4xy-2\ge2\)
- Nếu \(xy< 1\Rightarrow A>-2xy+2+2xy=2\)
Vậy : \(A\ge2\left(đpcm\right)\)
Ta có:Xét hiệu \(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2-2=\left(x-y\right)^2+\left(\frac{xy-1}{x-y}\right)^2+2\left(xy-1\right)\ge0\)
\(=\left(x-y+\frac{xy-1}{x-y}\right)^2\ge0\)
\(\Rightarrow x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\left(đpcm\right)\)
Ta có : \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\)
Theo bất đẳng thức Cô si ta có :
\(x^2+y^2\ge2xy\)dấu = khi x=y
\(\Rightarrow\frac{x^2+y^2}{xy}\ge\frac{2xy}{xy}=2\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\) dấu = khi x=y