K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2020

\(\sqrt{\frac{x}{y+z}}=\frac{2x}{2\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)

Tương tự: \(\sqrt{\frac{y}{z+x}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)

Cộng vế với vế:

\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{z+x}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" không xảy ra

13 tháng 10 2018

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

9 tháng 1 2017

Xét \(4\left(x^3+y^3\right)-\left(x+y\right)^3=3\left(x+y\right)\left(x-y\right)^2\ge0\) (Vì x,y > 0)

Suy ra \(z+\sqrt[3]{4\left(x^3+y^3\right)}\ge x+y+z\)

Hay \(\frac{x+y}{z+\sqrt[3]{4\left(x^3+y^3\right)}}\le\frac{x+y}{x+y+z}\)

Tương tự : \(\frac{y+z}{x+\sqrt[3]{4\left(y^3+z^3\right)}}\le\frac{y+z}{x+y+z}\)

\(\frac{z+x}{y+\sqrt[3]{4\left(z^3+x^3\right)}}\le\frac{z+x}{x+y+z}\)

Cộng theo vế được đpcm.

NV
14 tháng 2 2020

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\)

BĐT cần chứng minh: \(\frac{a+b}{c^2}+\frac{b+c}{a^2}+\frac{c+a}{b^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=a\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+b\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+c\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

Mà: \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{a}{bc}+\frac{b}{ac}\ge\frac{2}{c}\) ; \(\frac{c}{ab}+\frac{b}{ac}\ge\frac{2}{a}\)

\(\Rightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)

25 tháng 11 2019
https://i.imgur.com/OrspMQU.jpg
NV
25 tháng 11 2019

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)

Cộng vế với vế:

\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

14 tháng 10 2019

cho x=y=z hoặc x=y,z ->0+ tìm ra a rồi cm là xong

14 tháng 10 2019

bạn làm cụ thể dc ko ạ