Giúp tui vớiiiiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bị trừ và số trừ lần lượt là a,b
Hiệu là a-b
Theo đề, ta có: b+(a-b)=1010 và b-(a-b)=218
=>a-b=396 và b=614
=>a=1010
Chữ khó nhìn quá bạn!
1, I suggest collecting boys
2, How about going to the beach
3, Because she was very tired, she went to bed
Tham Khảo:
Every year, on January 13, Lim festival is held in Tien Du, Bac Ninh. While the festival is going on, there's a lot of activity. Like other festivals, the Lim festival is divided into ceremonies and festivals. The ceremony is organized with traditional rituals such as worshiping and rituals.
refer
Every year, on January 13, Lim festival is held in Tien Du, Bac Ninh. While the festival is going on, there's a lot of activity. Like other festivals, the Lim festival is divided into ceremonies and festivals. The ceremony is organized with traditional rituals such as worshiping and rituals.
Ta có\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)
\(\Leftrightarrow\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}=0\)
\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\) Vì \(\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)>0\)
\(\Rightarrow x+2014=0\)
\(\Rightarrow x=-2014\)
\(a;\left(\cos a-\sin a\right)\left(cosa+sina\right)=cos^2a-sin^2a=1-sin^2a-sin^2a=1-2sin^2a\)
\(b;VP=\left(2cosa-1\right)\left(2cosa+1\right)=4cos^2a-1=4\left(1-sin^2a\right)-1=3-4sin^2a=VT\)
e;\(\dfrac{1}{1+tana}+\dfrac{1}{1+cota}=1\Leftrightarrow cota+tana+2=\left(cota+1\right)\left(tana+1\right)\Leftrightarrow cota+tana+2=cota.tana+cota+tana+1\Leftrightarrow cota+tana+2=1+cota+tana+1\Leftrightarrow0=0\left(đúng\right)\Rightarrow VT=VP\)
\(d;sin^3a+cos^3a=\left(sina+cosa\right)\left(sin^2a-sina.cosa+cos^2a\right)=\left(sina+cosa\right)\left(1-sina.cosa\right)\left(đpcm\right)\left(hđt:a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\right)\)
\(c;sin^2a.cosa+sina.cos^2a=\left(sina.cosa\right)\left(sin^2+cos^2\right)=sina.cosa\)
\(f;;tana+\dfrac{cosa}{1+sina}=\dfrac{sina}{cosa}+\dfrac{cosa}{1+sina}=\dfrac{sina+sin^2a+cos^2a}{cosa\left(1+sina\right)}=\dfrac{1+sina}{cosa\left(1+sina\right)}=\dfrac{1}{cosa}\)
\(g;1+cot^2a=\dfrac{1}{sin^2a}=\dfrac{1}{1-cos^2a}=\dfrac{1}{\left(1-cosa\right)\left(1+cosa\right)}\left(đpcm\right)\)
\(h;\dfrac{1+cosa}{1-cosa}-\dfrac{1-cosa}{1+cosa}=\dfrac{\left(cosa+1\right)^2-\left(cosa-1\right)^2}{1-cosa^2}=\dfrac{\left(cosa+1-cosa+1\right)\left(cosa+1+cosa-1\right)}{1-cos^2a}=\dfrac{4cosa}{sin^2a}\left(đpcm\right)\)
\(k;\dfrac{1+cosa}{sina}-\dfrac{sina}{1+cosa}=\dfrac{\left(cosa+1\right)^2-sin^2a}{sina\left(1+cosa\right)}=\dfrac{cos^2a+2cosa+1-sin^2a}{sina\left(1+cosa\right)}=\dfrac{2cos^2a+2cosa}{sina\left(1+cosa\right)}=\dfrac{2cosa\left(1+cosa\right)}{sina\left(1+cosa\right)}=\dfrac{2cosa}{sina}=2cota\left(đpcm\right)\)
\(m;;;\Leftrightarrow sin^3a=cosa\left(1+cosa\right)\left(tana-sina\right)=\left(cosa+cos^2a\right)\left(tana-sina\right)\Leftrightarrow sin^3a=\left(cosa+cos^2a\right)\left(\dfrac{sina}{cosa}-sina\right)=sina-sina.cosa+cosa.sina-cos^2a.sina\Leftrightarrow sin^3a=sina-cos^2a.sina\Leftrightarrow sin^3a-sina\left(1-cos^2a\right)=0\Leftrightarrow sin^3a-sina.sin^2a=0\Leftrightarrow0=0\left(đúng\right)\Rightarrowđpcm\)