Giải phương trình:
\(x^2+\left(14-x^2\right)=100\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x^3-12x^2y+6xy^2-y^3=8\)
\(\Leftrightarrow\left(2x-y\right)^3=8\)
\(\Leftrightarrow2x-y=2\)
\(\Rightarrow y=2x-2\)
Thế xuống pt dưới:
\(\left(x^2-2x-2\right)\left(-3x^2+6x-9\right)=14\)
Đặt \(x^2-2x=t\)
\(\Rightarrow\left(t-2\right)\left(-3t-9\right)=14\)
\(\Leftrightarrow...\)
<=>x-1+x-2+x-3+x-4=14
<=>4x-(1+2+3+4)=14
<=>4x-10=14
<=>4x=24
<=>x=24/4
<=>x=6
vậy x=6
nhớ lick cho mình nha
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
\(\frac{x^2}{\left(x+1\right)^2}\Leftrightarrow x^2:\left(x+1\right)^2=14\). Biến đổi phương trình. Ta có:
\(x^2:x^2=14-1=13\). Ta có hệ phương trình mới:
\(x^2:x^2=13\Leftrightarrow x^{2-2}=13\Leftrightarrow x^0=13\). Mà:
\(x^0=1=13\)
\(\Rightarrow\)Phương trình vô ngiệm
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:
\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý
b.
Đặt \(x+3=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)
\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)
\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)
Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.
- Với \(x=\left\{100;101\right\}\) là 2 nghiệm của pt
- Với \(x< 100\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|>0\\\left|x-101\right|=\left|101-x\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn
- Với \(x>101\Rightarrow\left\{{}\begin{matrix}\left|x-101\right|>0\\\left|x-100\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn
- Với \(100< x< 101\Rightarrow\left\{{}\begin{matrix}0< x-100< 1\\0< 101-x< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|^{100}< x-100\\\left|x-101\right|^{101}=\left|101-x\right|^{101}< 101-x\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}< x-100+101-x=1\) ptvn
Vậy pt có đúng 2 nghiệm \(x=\left\{100;101\right\}\)
a) \(x^3-6x^2-9x+14=0\)
\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)
\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)
\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)
vô nghiệm
\(x^2+\left(14-x^2\right)=100\)
\(\Leftrightarrow\) \(x^2+14-x^2=100\)
\(\Leftrightarrow\) \(x^2-x^2=100-84\)
\(\Leftrightarrow\) \(0=86\) \(\left(\text{loại}\right)\)
Vậy \(\text{S = ∅ . }\)
Phương trình vô nghiệm