Tính
A= (\(\frac{1}{2}\)- 1) x (\(\frac{1}{3}\)- 1) x (\(\frac{1}{4}\)- 1) x ... x (\(\frac{1}{2017}\)- 1)
Làm hộ mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left(\frac{x^2+1}{x+1}-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)=\left(\frac{x^2+1-\left(x+1\right)}{x+1}\right)\left(\frac{4x-2\left(x-1\right)}{x\left(x-1\right)}\right)\)
\(=\left(\frac{x^2+1-x-1}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)=\left(\frac{x^2-x}{x+1}\right)\left(\frac{2\left(x+1\right)}{x\left(x-1\right)}\right)=\frac{2x\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}=2\)
Vậy Q = 2
Hình như đề là rút gọn thì phải.
Giải
\(Q=\left(\frac{x^2+1}{x+1}-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)\)
\(=\left(\frac{x^2}{x}-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)=\left(x-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)\)
\(=\frac{4\left(x-1\right)}{x-1}-\frac{2\left(x-1\right)}{x}=4-\frac{2x-2}{x}\)
a) \(\frac{x-3}{3}-1=\frac{x}{-4}\)
\(\Leftrightarrow\frac{x-3}{3}-\frac{3}{3}=\frac{x}{-4}\)
\(\Leftrightarrow\frac{x-6}{3}=\frac{x}{-4}\)
\(\Leftrightarrow-4\left(x-6\right)=3x\)
\(\Leftrightarrow-4x+24=3x\)
\(\Leftrightarrow24=3x+4x\)
\(\Leftrightarrow7x=24\)
\(\Leftrightarrow x=\frac{24}{7}\)
b) \(\frac{5}{8}-\left(x-\frac{1}{2}\right)=\frac{-3}{4}\)
\(\Leftrightarrow\frac{5}{8}-x+\frac{1}{2}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{5}{8}+\frac{4}{8}-x=\frac{-3}{4}\)
\(\Leftrightarrow\frac{9}{8}-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{9}{8}+\frac{3}{4}\)
\(\Leftrightarrow x=\frac{15}{8}\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
\(a,5,5-\left|x-0,4\right|=-1\frac{1}{5}\)
\(\Rightarrow5,5-\left|x-0,4\right|=-\frac{6}{5}\)
\(\Rightarrow-\left|x-0,4\right|=-\frac{6}{5}-5,5=-6,7\)
\(\Rightarrow\left|x-0,4\right|=6,7\)
\(\Rightarrow x-0,4=\pm6,7\)
\(\Rightarrow\orbr{\begin{cases}x-0,4=6,7\\x-0,4=-6,7\end{cases}\Rightarrow\orbr{\begin{cases}x=7,1\\x=-6,3\end{cases}}}\)
\(a,5,5-\left|x-0,4\right|=-1\frac{1}{5}\)
=> \(\left|x-0,4\right|=5,5-\left[-\frac{6}{5}\right]=5,5+1,2=6,7\)
=> \(\left|x-0,4\right|=\pm6,7\)
Xét hai trường hợp :
TH1 : x - 0,4 = 6,7
=> x = 6,7 + 0,4 = 7,1
TH2 : x - 0,4 = -6,7
=> x = -6,7 + 0,4 =-6,3
\(b,\left[1-\frac{3}{4}\left|x\right|\right]^2=\frac{16}{25}\)
=> \(\left[1-\frac{3}{4}\left|x\right|\right]=\pm\sqrt{\frac{16}{25}}\)
=> \(\left[1-\frac{3}{4}\left|x\right|\right]=\pm\frac{4}{5}\)
=> \(\orbr{\begin{cases}1-\frac{3}{4}\left|x\right|=\frac{4}{5}\\1-\frac{3}{4}\left|x\right|=-\frac{4}{5}\end{cases}}\)=> \(\orbr{\begin{cases}x=\pm\frac{4}{15}\\x=\pm\frac{12}{5}\end{cases}}\)
\(c,\left[0,1\left|x\right|-\frac{1}{2}\right]\left[0,5-\left|x\right|\right]=0\)
=> \(\orbr{\begin{cases}0,1\left|x\right|-\frac{1}{2}=0\\0,5-\left|x\right|=0\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{1}{10}\left|x\right|=\frac{1}{2}\\\left|x\right|=0,5\end{cases}}\)
=> \(\orbr{\begin{cases}\left|x\right|=5\\\left|x\right|=0,5\end{cases}}\)=> \(\orbr{\begin{cases}x\in\left\{5;-5\right\}\\x\in\left\{0,5;-0,5\right\}\end{cases}}\)
d, Xét hai trường hợp rồi ra kết quả thôi
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
Đặt N=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+......+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+\(\frac{2}{4.5}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta lại có:
\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x+y+z=1\)
Làm nốt