K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

 \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)<\(1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}........+\frac{1}{49.50}\)

TA CO \(1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}........+\frac{1}{49.50}\)

=1+\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-.....+\frac{1}{49}-\frac{1}{50}\)

=1+\(\frac{25}{50}-\frac{1}{50}\)

=1+\(\frac{24}{50}\)

=1\(\frac{24}{50}\)

TA CO : 1\(\frac{24}{50}\)<2

MA A<1\(\frac{24}{50}\)

=>  A<2

1 tháng 5 2019

a) vì a<b

<=>-5a>-5b

mà 7>2

<=>7-5a>2-5b

b) vì m<n <=>2m<2n<=>2m-5<2n-5

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

10 tháng 7 2019

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\left(a+b\right)^2< 4\Rightarrow-2< a+b< 2\Rightarrow a+b< 2\)

6 tháng 6 2018

a) Mình làm lại , mk thiếu dấu

Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)

Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

x + y + z ≥ xy + yz + zx

⇔ x + y + z - xy - yz - xz ≥ 0 ( *)

Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)

Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)

Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :

( x - 1)( y - 1)( z - 1) ≤ 0

⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0

⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)

Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)

Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)

Từ ( * ; **) ⇒ đpcm

6 tháng 6 2018

j mà lắm bài thế :D

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm