cho 2 đường thẳng 2x-3y=4 và 3x+5y=2. Tìm trêm Ox điểm có hoành độ là số nguyên dương nhỏ nhất sao cho qua điểm đó dựng được đường thẳng vuông góc với Ox thì đường thẳng đó cắt 2 đường thẳng trên tại 2 điểm có tọa độ nguyên
( m.n giúp với )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các điểm thỏa mãn điều kiện có tọa độ là \(\left(a;0\right)\)
Khi đó hệ sau có nghiệm nguyên:\(\hept{\begin{cases}a-2y=3\\a-3y=2\\x-5y=-7\end{cases}\Rightarrow\frac{a-3}{2};\frac{a-2}{3};\frac{a+7}{5}}\) nguyên.
TH1: \(a\ge0.\)
\(\frac{a-3}{2}\in Z\) nên a lẻ; \(\frac{a+7}{5}\in Z\Rightarrow\) a chia 5 dư 3. Kết hợp hai điều kiện trên thì a có tận cùng là 3.
Khi đó a - 2 có tận cùng là 1. Vậy để \(\frac{a-2}{3}\in Z\) thì a - 2 = 34k \(\left(k\in N;k\ge1\right)\)
Vậy a = 2 +34k \(\left(k\in N;k\ge1\right)\)
TH2: a < 0
\(\frac{a-3}{2}\in Z\Rightarrow\)- a là số tự nhiên lẻ. \(\frac{a+7}{5}\in Z\Rightarrow\) -a chia 5 dư 2. Vậy -a có tận cùng là 7, vậy a có tận cùng là 7.
Vậy thì a - 2 có tận cùng là 9. Vậy a - 2 = -34k+2 \(\left(k\in N;k\ge0\right)\)
Hay a = 2 - 34k+2 \(\left(k\in N;k\ge0\right)\)
Tóm lại các điểm thỏa mãn điều kiện của đề bài sẽ có tọa độ là \(\left(2+3^{4k};0\right)\) với \(\left(k\in N;k\ge1\right)\) hoặc \(\left(2-3^{4k+2};0\right)\) với \(\left(k\in N;k\ge0\right)\)
Bài này tương tự như bài cô đã chứng minh.
Gọi các điểm thỏa mãn yêu cầu có tọa độ \(\left(0;b\right)\)
Khi đó hệ sau có nghiệm nguyên \(\hept{\begin{cases}x+2b=6\\2x-3b=4\end{cases}\Rightarrow6-2b;\frac{4+3b}{2}\in Z.}\)
b nguyên nên 6 - 2b nguyên là hiển nhiên. Để \(\frac{4+3b}{2}\in Z\) thì b = 2k.
Vậy các điểm thỏa mãn sẽ có tọa độ là (0;2k) (\(k\in Z\) ).
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Cô hướng dẫn nhé.
Giả sử điểm cầm tìm là M(a; 0). Như vậy, đường thẳng qua M, vuông góc với Ox là đường thẳng (d) : x = a.
Giao điểm của (d) với hai đường thẳng đã cho lần lượt là: \(A\left(a;\frac{2a-4}{3}\right)\) và \(B\left(a;\frac{3a-2}{5}\right)\)
Do a nguyên nên ta cầm tìm điều kiện để \(\frac{2a-4}{3}\) và \(\frac{3a-2}{5}\)nguyên.
Ta thấy \(\frac{2a-4}{3}=\frac{2\left(a-2\right)}{3}\)nên (a - 2) chia hết 3. Vậy thì a có dạng 3k + 2, (k nguyên dương).
\(\frac{3a-2}{5}=\frac{3a+3-5}{5}\) nên (3a + 3) chia hết 5 hay a + 1 chia hết 5. Vậy a có dạng 5t - 1, (t nguyên dương).
Kết hợp hai điều kiện: \(3k+2=5t-1\Leftrightarrow3\left(k+1\right)=5t\Leftrightarrow\frac{k+1}{5}=\frac{t}{3}.\)
a min thì k, t min nên ta tìm được k = 4, t = 3.
Vậy thi a = 14.
kết quả bằng 14