Cho tam giác ABC có góc A tù. Các đường cao AM, BP, CN cắt nhau tại H.
a) Chứng minh: BM.BC = BP.BH
b) Chứng minh NA là tia phân giác của góc PNM
c) Gọi S là diện tích của tam giác BHC. Hãy tính: BC.AH+AB.CH+AC.BH theo S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BNHM có
\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối
\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a. \(\Delta BPC\sim\Delta BMH\left(g-g\right)\Rightarrow\frac{BP}{BM}=\frac{BC}{BH}\) hay BM.BC = BP.BH.
b. Ta có: \(\Delta HNB\sim\Delta HPC\left(g-g\right)\Rightarrow\frac{HN}{HB}=\frac{HP}{HC}\Rightarrow\Delta HNP\sim\Delta HBC\left(c-g-c\right)\)
hay góc PNH = HBC. Tương tự góc MNC = CBH. Vậy thì góc PNH = MNC, từ đó suy ra góc MNB = PNB (Cùng phụ với hai góc trên).
Vậy thi NA là phân giác góc PNM.
c. Ta thấy \(BC.AH=BC\left(HM-AM\right)=BC.MH-BC.AM=\frac{S}{2}-\frac{S_{ABC}}{2}\)
Tương tự \(AB.CH=\frac{S}{2}-\frac{S_{AHC}}{2};AC.VH=\frac{S}{2}-\frac{S_{ABH}}{2}\)
Vậy thì \(BC.AH+AB.CH+AC.BH=\frac{3S}{2}-\frac{S_{ABC}+S_{AHC}+S_{AHB}}{2}=\frac{3S}{2}-\frac{S}{2}=S.\)