Cho x>1, tìm GTNN của \(\dfrac{x}{\sqrt{x}-1}\) + 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{1}{2018}\Leftrightarrow2018x+2018y=xy\Leftrightarrow xy-2018x-2018y=0\Leftrightarrow xy-2018x-2018y+2018^2=2018^2\Leftrightarrow x\left(y-2018\right)-2018\left(y-2018\right)=2018^2\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\Leftrightarrow\sqrt{\left(x-2018\right)\left(y-2018\right)}=2018\Leftrightarrow2\sqrt{\left(x-2018\right)\left(y-2018\right)}=2.2018\Leftrightarrow x+y+2\sqrt{\left(x-2018\right)\left(y-2018\right)}=x+y+2.2018\Leftrightarrow x-2018+2\sqrt{\left(x-2018\right)\left(y-2018\right)}+y-2018=x+y\Leftrightarrow\left(\sqrt{x-2018}+\sqrt{y-2018}\right)^2=x+y\Leftrightarrow\sqrt{x-2018}+\sqrt{y-2018}=\sqrt{x+y}\Leftrightarrow\dfrac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}=1\Leftrightarrow P=1\)
Vậy nếu \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\) thì \(P=1\)
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(P=\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-1+\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}2\sqrt{x}\ge0\\\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}\ge0\)
\(\Rightarrow P\ge-1\)
\(P_{min}=-1\) khi \(x=0\)
a) Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
a) \(B=\)\(\dfrac{\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\) ĐKXĐ: x>0
=\(\dfrac{\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)
\(=\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}:\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
=\(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b)
Theo câu a ) ta có :
B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Xét : \(x+\sqrt{x}+1=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (với mọi x>0) (1)
Xét:
\(\sqrt{x}>0\) (2)
Từ (1) và (2) =>\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>0\) (ĐPCM)
c) B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( theo câu a)
=\(\dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+1\)
=\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\)
Áp dụng BĐT cô si cho \(\sqrt{x}\)và \(\dfrac{1}{\sqrt{x}}\)
Ta có : \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}\)
=2
Vậy :\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2+1\)
Hay\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge3\)
Min B= 3 Dấu "=" xảy ra khi x=1
CHÚC BẠN HỌC TỐT
ĐKXĐ: \(x\ge0;x\ne1\)
\(M=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(M=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\ge1-\dfrac{2}{0+1}=-1\)
\(M_{min}=-1\) khi \(x=0\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
a) ĐKXĐ: \(x>0\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
\(A=x-\sqrt{x}=2\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)(do \(\sqrt{x}+1\ge1>0\))
b) \(A=x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)>0\)(do \(x>1\))
\(\Leftrightarrow A=x-\sqrt{x}=\left|A\right|\)
c) \(A=x-\sqrt{x}=\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(minA=-\dfrac{1}{4}\Leftrightarrow\sqrt[]{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
\(a,A=\dfrac{x\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\left(x>0\right)\\ A=\dfrac{x\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\\ A=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\\ A=2\Leftrightarrow x-\sqrt{x}-2=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}=2\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)
\(b,x>1\Leftrightarrow\sqrt{x}-1>0\\ \Leftrightarrow\left|A\right|=\left|x-\sqrt{x}\right|=\left|\sqrt{x}\left(\sqrt{x}-1\right)\right|=\sqrt{x}\left(\sqrt{x}-1\right)=A\left(\sqrt{x}>0\right)\)
\(c,A=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ A_{min}=-\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
\(P=\dfrac{x}{\sqrt{x}-1}+2018=\dfrac{x-1+1}{\sqrt{x}-1}+2018\)
\(=\dfrac{x-1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}+2018=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}+2018\)
\(=\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2020\)
\(\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}+2020\) (BĐT Cauchy)
\(=2022\) (Dấu "=" khi \(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\Leftrightarrow x=4\) (tm))