\(\dfrac{x}{\sqrt{x}-1}\) + 2018

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

\(P=\dfrac{x}{\sqrt{x}-1}+2018=\dfrac{x-1+1}{\sqrt{x}-1}+2018\)

\(=\dfrac{x-1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}+2018=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}+2018\)

\(=\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2020\) 

\(\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}+2020\) (BĐT Cauchy)

\(=2022\) (Dấu "=" khi \(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\Leftrightarrow x=4\) (tm))

19 tháng 12 2018

Ta có \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{1}{2018}\Leftrightarrow2018x+2018y=xy\Leftrightarrow xy-2018x-2018y=0\Leftrightarrow xy-2018x-2018y+2018^2=2018^2\Leftrightarrow x\left(y-2018\right)-2018\left(y-2018\right)=2018^2\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\Leftrightarrow\sqrt{\left(x-2018\right)\left(y-2018\right)}=2018\Leftrightarrow2\sqrt{\left(x-2018\right)\left(y-2018\right)}=2.2018\Leftrightarrow x+y+2\sqrt{\left(x-2018\right)\left(y-2018\right)}=x+y+2.2018\Leftrightarrow x-2018+2\sqrt{\left(x-2018\right)\left(y-2018\right)}+y-2018=x+y\Leftrightarrow\left(\sqrt{x-2018}+\sqrt{y-2018}\right)^2=x+y\Leftrightarrow\sqrt{x-2018}+\sqrt{y-2018}=\sqrt{x+y}\Leftrightarrow\dfrac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}=1\Leftrightarrow P=1\)

Vậy nếu \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\) thì \(P=1\)

21 tháng 7 2018

# Bài 1

* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương

* Với \(x,y>0\) áp dụng (1) ta có

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)

* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)

Áp dụng (2) với x , y > 0 ta có

\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)

* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)

\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xra khi \(x=y=4\)

Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

13 tháng 7 2018

\(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\times\dfrac{1}{\left(\sqrt{x}-1\right)}}=2\)

\(\Rightarrow\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\ge2+2=4\)

Vậy GTNN của P là 4 thì GTNN của \(\sqrt{P}\) sẽ là 2 .

Dấu \("="\) xảy ra khi \(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\) ( Bạn tự giải ra nhé :3 )

Bài 1:

a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)

\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

8 tháng 8 2018

Áp dụng BĐT Cauchy , ta có :

\(\sqrt{x}+\sqrt{x}+\dfrac{1}{x}\ge3\sqrt[3]{\sqrt{x}.\sqrt{x}.\dfrac{1}{x}}=3\)

\(\sqrt{y}+\sqrt{y}+\dfrac{1}{y}\ge3\sqrt[3]{\sqrt{y}.\sqrt{y}.\dfrac{1}{y}}=3\)

\(\Rightarrow2\left(\sqrt{x}+\sqrt{y}\right)+\dfrac{1}{x}+\dfrac{1}{y}\ge6\)

\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y}\right)\ge4\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge2\)

\(\Rightarrow A_{Min}=2."="\Leftrightarrow x=y=1\)