Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/x + 1/y = 1/2018
<=> 1/x = 1/2018 - 1/y = (y - 2018)/(2018y)
<=> x = 2018y/(y - 2018)
=> x + y = 2018y/(y - 2018) + y = y^2/(y - 2018)
=> x - 2018 = 2018y/(y - 2018) - 2018 = 2018^2/(y - 2018)
=> P = 1
Ta có:
\(P=\frac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}\)
\(\Leftrightarrow P^2=\frac{x+y}{x+y-4036+2\sqrt{\left(x-2018\right)\left(y-2018\right)}}\)
\(=\frac{x+y}{x+y-4036+2\sqrt{xy-2018x-2018y+2018^2}}\)
Mặt khác :
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{2018}\)
\(\Leftrightarrow2018x+2018y=xy\)
\(\Leftrightarrow xy-2018x-2018y=0\)(1)
Thế (1) vào P^2 ta có :
\(P^2=\frac{x+y}{x+y-4036+2\sqrt{2018^2}}=\frac{x+y}{x+y}=1\)
\(\Rightarrow P=.......\)
bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)
\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)
mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)
vậy \(Q^3>Q\)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn
Hoàng Lê Bảo NgọcTrần Việt Linh
cứu tôi với
Bài 1:
Đặt 2018=a
\(B=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=1+a-\dfrac{a}{a+1}+\dfrac{a}{a+1}=1+a=2019\)
\(0< x,y< 1\Rightarrow\dfrac{x}{1-x}+\dfrac{y}{1-y}>0\)
\(\left(\dfrac{x}{1-x}+\dfrac{y}{1-y}\right)^{2018}=1\Rightarrow\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\)
\(\Rightarrow x-xy+y-xy=1-x-y+xy\Rightarrow2\left(x+y\right)-1=3xy\) (1)
\(A=\left(x+y+\sqrt{\left(x+y\right)^2-3xy}\right)^{2019}=\left(x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\right)^{2019}\)
\(A=\left(x+y+\sqrt{\left(x+y-1\right)^2}\right)^{2019}=\left(x+y+\left|x+y-1\right|\right)^{2019}\)
Ta xét dấu \(x+y-1\) để phá trị tuyệt đối:
Từ (1) ta cũng có \(2x-1=3xy-2y=y\left(3x-2\right)\Rightarrow y=\dfrac{2x-1}{3x-2}\)
Mà \(0< y< 1\Rightarrow0< \dfrac{2x-1}{3x-2}< 1\Rightarrow0< x< \dfrac{1}{2}\)
\(x+y-1=x+\dfrac{2x-1}{3x-2}-1=\dfrac{3x^2-3x+1}{3x-2}< 0\) \(\forall x:0< x< \dfrac{1}{2}\)
\(\Rightarrow\left|x+y-1\right|=1-x-y\)
\(\Rightarrow A=\left(x+y+1-x-y\right)^{2019}=1^{2019}=1\)
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{1}{2018}\Leftrightarrow2018x+2018y=xy\Leftrightarrow xy-2018x-2018y=0\Leftrightarrow xy-2018x-2018y+2018^2=2018^2\Leftrightarrow x\left(y-2018\right)-2018\left(y-2018\right)=2018^2\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\Leftrightarrow\sqrt{\left(x-2018\right)\left(y-2018\right)}=2018\Leftrightarrow2\sqrt{\left(x-2018\right)\left(y-2018\right)}=2.2018\Leftrightarrow x+y+2\sqrt{\left(x-2018\right)\left(y-2018\right)}=x+y+2.2018\Leftrightarrow x-2018+2\sqrt{\left(x-2018\right)\left(y-2018\right)}+y-2018=x+y\Leftrightarrow\left(\sqrt{x-2018}+\sqrt{y-2018}\right)^2=x+y\Leftrightarrow\sqrt{x-2018}+\sqrt{y-2018}=\sqrt{x+y}\Leftrightarrow\dfrac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}=1\Leftrightarrow P=1\)
Vậy nếu \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\) thì \(P=1\)