K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

3n + 14 chia hết cho n + 3

=> 3n + 9 + 5 chia hết cho n + 3

=> 3(n + 3) + 5 chia hết cho n + 3

Có 3(n + 3) chia hết cho n + 3

=> 5 chia hết cho n + 3

=> n + 3 thuộc Ư(5)

=> n + 3 thuộc {1; -1; 5; -5}

=> n thuộc {-2; -4; 2; -8}

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

21 tháng 11 2021

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

14 tháng 10 2017

a, n + 4  ⋮ n

Ta có : n  ⋮ n

=> Để n + 4  ⋮ thì 4 phải chia hết chọn :

Mà n ∈ N => n ∈ { 1 ; 2 ; 4 }

Vậy với n ∈ { 1 ; 2 ; 4 } thì  n + 4  ⋮ n .

b, 3n + 7 ⋮ n

Để  3n + 7 ⋮ n thì :

 7 ⋮ n ( vì 3n ⋮ n ) mà n ∈ N

n ∈ { 1 ; 7 }

Vậy với n ∈ { 1 ; 7} thì  3n + 7 ⋮ n .

c, 27 - 5n ⋮ n

Để 27 - 5n ⋮ n thì :

27 ⋮ n ( vì 5n ⋮ n ) mà n  ∈ N . 

n  ∈ { 1 ; 3 ; 9 ; 27 }

Vậy với n  ∈ { 1 ; 3 ; 9 ; 27 } thì 27 - 5n ⋮ n .

15 tháng 6 2018

1. A.

\(n+2⋮n+1\) 

\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\) 

Mà \(\left(n+1\right)⋮\left(n+1\right)\)

Nên \(1⋮\left(n+1\right)\)  

\(\Rightarrow\left(n+1\right)€\)Ư(1)

       (n+1) € {1;—1}

TH1: n+1=1                  TH2: n+1=—1

         n    =1–1                       n    =—1 —1

         n    =0                           n    =—2

Vậy n€{0;—2}

15 tháng 6 2018

1a) 

n+2 chia hết cho n-1

hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)

Mà (n-1) chia hết cho n-1

nên 3 chia hết cho n-1

Suy ra n-1 thược Ư(3)={1;-1;3;-3}

Suy ra n thuộc {2;0;4;-2}

b) 3n-5 chia hết cho n-2

hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)

3(n-2)+1 chia hết cho n-2

Mà 3(n-2) chia hết cho n-2

nên 1 chia hết cho n-2

Suy ra n-2 thược Ư(1)={1;-1}

Suy ra n thuộc {3;1}

19 tháng 12 2018

\(3n+2⋮n-1\Leftrightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;5\right\}\Leftrightarrow n\in\left\{2;6\right\}\)