Cho số tự nhiên x và y thỏa mãn 1=<y<x=<30
a, tính giá trị lớn nhất của phân số A= (x+y)/(x-y)
b, tính giá trị nhỏ nhất của phân số B=(x.y)/(x-y)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1
$\Rightarrow x=0$
Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$
Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:
$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại)
Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:
$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2
$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)
Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:
$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)
Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:
$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1
$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$
$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.
Vậy $(x,y)=(0,0)$
Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)
Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y
=> yk \(<\) 2y
=> k\(<\) 2
Mà k là một là một số tự nhiên khác 0
Nên k=1
Thay k = x+1 vào y+1 ta được
x+1+1 = x+2 chia hết cho x
Mà x chia hết cho x nên 2 chia hết cho x
=> x\(\in\left\{1;2\right\}\)
Với x=1 thì y=x+1=1+1=2
Với x=2 thì y=2+1=3
Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)