1) cho \(\Delta ABC\)vuông tại A , đường cao AH. Gọi I,K theo thứ tự là hình chiếu của H trên AB và AC. Đặt AC=b, AB=c
a) tính độ dài AI,AK theo b và c
b) CM \(\frac{BI}{CK}\)=\(\frac{c^3}{b^3}\)
Giải dùm mik zs mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo định lí Pitago ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{b^2+c^2}\)
Theo hệ thức lượng trong tam giác vuông ta có
\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{bc}{\sqrt{b^2+c^2}}\)
\(AI.AB=AH^2\Rightarrow AI=\frac{AH^2}{AB}=\frac{b^2c^2}{\left(b^2+c^2\right)c}=\frac{b^2c}{b^2+c^2}\)
\(AK.AC=AH^2\Rightarrow AK=\frac{AH^2}{AC}=\frac{b^2c^2}{\left(b^2+c^2\right)b}=\frac{bc^2}{b^2+c^2}\)
b. Ta có \(BI=AB-AI=c-\frac{b^2c}{b^2+c^2}=\frac{c^3+cb^2-b^2c}{b^2+c^2}=\frac{c^3}{b^2+c^2}\)
\(CK=AC-AK=b-\frac{bc^2}{b^2+c^2}=\frac{b^3}{b^2+c^2}\)
Vậy \(\frac{BI}{CK}=\frac{\frac{c^3}{b^2+c^2}}{\frac{b^3}{b^2+c^2}}=\frac{c^3}{b^3}\)
Đáp án:
Giải thích các bước giải:
a. Xét tứ giác AIHK có
∠HKA=∠KAI=∠AIH=90 độ
⇒AIHK là hình chữ nhật
b. Có ∠CHK=∠CBA ( đồng vị )
mà ∠CBA=∠KAH ( do cùng phụ ∠BAH)
∠KAH=∠AKI (t/c hcn)
⇒∠CBA=∠AKI
Mặt khác : ∠ACB+∠ABC=90 độ
∠AIK+∠AKI=90 độ
⇒∠ACB=∠AIK
`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`
Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`
`=>\hat{C}=\hat{A_1}`
Xét `\triangle ABC` và `\triangle HBA` có:
`{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)
`b)` Ta có: `BC=HB+HC=4+9=13(cm)`
Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao
`@AH=\sqrt{BH.HC}=6 (cm)`
`@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`
Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`
`=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`
`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`
Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`
`=>AD.AB=AE.AC`
a: \(BC=\sqrt{c^2+b^2}\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{bc}{\sqrt{c^2+b^2}}\)
\(AI=\dfrac{AH^2}{AB}=\dfrac{bc}{\sqrt{c^2+b^2}}\cdot\dfrac{1}{c}=\dfrac{b}{\sqrt{b^2+c^2}}\)
\(AK=\dfrac{AH^2}{AC}=\dfrac{bc}{\sqrt{c^2+b^2}}\cdot\dfrac{1}{b}=\dfrac{c}{\sqrt{c^2+b^2}}\)
b: \(\dfrac{BI}{CK}=\dfrac{HB^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{HB^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}=\dfrac{c^3}{b^3}\)