K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

A B C H I K

a. Theo định lí Pitago ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{b^2+c^2}\)

Theo hệ thức lượng trong tam giác vuông ta có 

 \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{bc}{\sqrt{b^2+c^2}}\)

\(AI.AB=AH^2\Rightarrow AI=\frac{AH^2}{AB}=\frac{b^2c^2}{\left(b^2+c^2\right)c}=\frac{b^2c}{b^2+c^2}\)

\(AK.AC=AH^2\Rightarrow AK=\frac{AH^2}{AC}=\frac{b^2c^2}{\left(b^2+c^2\right)b}=\frac{bc^2}{b^2+c^2}\)

b. Ta có \(BI=AB-AI=c-\frac{b^2c}{b^2+c^2}=\frac{c^3+cb^2-b^2c}{b^2+c^2}=\frac{c^3}{b^2+c^2}\)

\(CK=AC-AK=b-\frac{bc^2}{b^2+c^2}=\frac{b^3}{b^2+c^2}\)

Vậy \(\frac{BI}{CK}=\frac{\frac{c^3}{b^2+c^2}}{\frac{b^3}{b^2+c^2}}=\frac{c^3}{b^3}\)

23 tháng 7 2020

Đáp án:

Giải thích các bước giải:

 a. Xét tứ giác AIHK có

∠HKA=∠KAI=∠AIH=90 độ

⇒AIHK là hình chữ nhật

b. Có ∠CHK=∠CBA ( đồng vị )

mà ∠CBA=∠KAH ( do cùng phụ ∠BAH)

∠KAH=∠AKI (t/c hcn)

⇒∠CBA=∠AKI

Mặt khác : ∠ACB+∠ABC=90 độ

∠AIK+∠AKI=90 độ

⇒∠ACB=∠AIK

8 tháng 5 2023

`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`

      Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`

    `=>\hat{C}=\hat{A_1}`

Xét `\triangle ABC` và `\triangle HBA` có:

    `{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)

`b)` Ta có: `BC=HB+HC=4+9=13(cm)`

Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao

    `@AH=\sqrt{BH.HC}=6 (cm)`

    `@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`

Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`

   `=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`

`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`

      Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`

   `=>AD.AB=AE.AC`

loading...

8 tháng 5 2023

Cảm ơn anh nhiều yeu

a: \(BC=\sqrt{c^2+b^2}\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{bc}{\sqrt{c^2+b^2}}\)

\(AI=\dfrac{AH^2}{AB}=\dfrac{bc}{\sqrt{c^2+b^2}}\cdot\dfrac{1}{c}=\dfrac{b}{\sqrt{b^2+c^2}}\)

\(AK=\dfrac{AH^2}{AC}=\dfrac{bc}{\sqrt{c^2+b^2}}\cdot\dfrac{1}{b}=\dfrac{c}{\sqrt{c^2+b^2}}\)

b: \(\dfrac{BI}{CK}=\dfrac{HB^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{HB^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}=\dfrac{c^3}{b^3}\)