K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

A B C H I K

a. Theo định lí Pitago ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{b^2+c^2}\)

Theo hệ thức lượng trong tam giác vuông ta có 

 \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{bc}{\sqrt{b^2+c^2}}\)

\(AI.AB=AH^2\Rightarrow AI=\frac{AH^2}{AB}=\frac{b^2c^2}{\left(b^2+c^2\right)c}=\frac{b^2c}{b^2+c^2}\)

\(AK.AC=AH^2\Rightarrow AK=\frac{AH^2}{AC}=\frac{b^2c^2}{\left(b^2+c^2\right)b}=\frac{bc^2}{b^2+c^2}\)

b. Ta có \(BI=AB-AI=c-\frac{b^2c}{b^2+c^2}=\frac{c^3+cb^2-b^2c}{b^2+c^2}=\frac{c^3}{b^2+c^2}\)

\(CK=AC-AK=b-\frac{bc^2}{b^2+c^2}=\frac{b^3}{b^2+c^2}\)

Vậy \(\frac{BI}{CK}=\frac{\frac{c^3}{b^2+c^2}}{\frac{b^3}{b^2+c^2}}=\frac{c^3}{b^3}\)

23 tháng 7 2020

Đáp án:

Giải thích các bước giải:

 a. Xét tứ giác AIHK có

∠HKA=∠KAI=∠AIH=90 độ

⇒AIHK là hình chữ nhật

b. Có ∠CHK=∠CBA ( đồng vị )

mà ∠CBA=∠KAH ( do cùng phụ ∠BAH)

∠KAH=∠AKI (t/c hcn)

⇒∠CBA=∠AKI

Mặt khác : ∠ACB+∠ABC=90 độ

∠AIK+∠AKI=90 độ

⇒∠ACB=∠AIK

15 tháng 4 2019

trl

câu b bài này hình như mik làm rồi

để mik làm xem

15 tháng 4 2019

bạn giúp mik làm câu b nhé thanks 

22 tháng 6 2016

bài này có 1 ý thui à bạn 

24 tháng 8 2022

A B D C E F M
Vẽ AM ⊥ AF cắt tia CB tại M.
△AME vuông tại A, đg cao AB: \(\dfrac{1}{AB^2}\) = \(\dfrac{1}{AM^2}\)+\(\dfrac{1}{AE^2}\) (1)
Xét ΔABM vuông tại B và ΔADF vuông tại D có: góc MAB = góc FAD (cùng phụ góc BAE)
⇒ △ABM ∽ △ADF (g.g)
⇒ \(\dfrac{AM}{AF}\) = \(\dfrac{AB}{AD}\) = 2
⇒ AM = 2AF (2)
(1)(2) ⇒ \(\dfrac{1}{AB^2}\) = \(\dfrac{1}{4AF^2}\)+\(\dfrac{1}{AE^2}\)  


              

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K