tính giá trị biểu thức
B=[1-1/2].[1-1/3].[1-1/4].[1-1/5].....[1-1/2003].[1-1/2004]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2004}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2003}{2004}\)
\(B=\dfrac{1\cdot2\cdot3\cdot...\cdot2003}{2\cdot3\cdot4\cdot...\cdot2004}\)
\(B=\dfrac{1}{2004}\)
B=(1-1/2)x(1-1/3)x(1-1/4)x(1-1/5)...(1-1/2003)x(1-1/2004)
B=1/2x2/3x3/4x4/5x...x2002/2003x2003/2004
B=1/2004
\(B=\dfrac{1}{2}x\dfrac{2}{3}x\dfrac{3}{4}x...x\dfrac{2003}{2004}\)
\(B=\dfrac{1}{2004}\)
\(B=\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times....\left(1-\dfrac{1}{2003}\right)\times\left(1-\dfrac{1}{2004}\right)\)
\(B=\dfrac{1}{2}\times\dfrac{2}{3}\times....\times\dfrac{2002}{2003}\times\dfrac{2003}{2004}\)
\(B=\dfrac{1}{2004}\)
a) \(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(=\dfrac{1}{2004}\)
b) \(B=5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}.4\dfrac{1}{2}-2.2\dfrac{1}{3}\right):\dfrac{7}{4}\)
\(=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{7}{3}.\dfrac{9}{2}-2.\dfrac{7}{3}\right).\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\left(\dfrac{21}{2}-\dfrac{14}{3}\right).\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{35}{6}.\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{10}{3}\)
\(=\dfrac{3}{5}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot....\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot....\cdot2003}{2\cdot3\cdot....\cdot2004}\)
\(=\frac{1}{2004}\)
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right).\)
\(\Rightarrow A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(\Rightarrow A=\dfrac{1}{2004}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2004}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}...\dfrac{2003}{2004}\\ =\dfrac{1}{2004}\)
\(=\frac{1}{2}\frac{2}{3}\frac{3}{4}\frac{4}{5}\frac{5}{6}\frac{6}{7}\frac{7}{8}\frac{8}{9}....\frac{2002}{2003}\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{2002}{2003}.\frac{2003}{2004}\)
\(B=\frac{1}{2004}\)