K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2023

\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right).\)

\(\Rightarrow A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{2002}{2003}.\dfrac{2003}{2004}\)

\(\Rightarrow A=\dfrac{1}{2004}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 8 2023

\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2004}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}...\dfrac{2003}{2004}\\ =\dfrac{1}{2004}\)

11 tháng 2 2022

A=\(x.\dfrac{1}{5}+x.\dfrac{2}{3}-x.\dfrac{1}{4}\)

  =\(x.\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{1}{4}\right)\)

  =\(x.\dfrac{37}{60}\)

Thay x=\(\dfrac{1}{2}\) vào A ta được

 A=\(\dfrac{1}{2}.\dfrac{37}{60}=\dfrac{37}{120}\)

  

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)

26 tháng 3 2022

\(=>C=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}.....\cdot\dfrac{101}{100}\)

\(C=\dfrac{3\cdot4\cdot5.......\cdot101}{2\cdot3\cdot4.........\cdot100}\)

\(C=\dfrac{101}{2}\)

26 tháng 3 2022

\(C=1\dfrac{1}{2}\cdot1\dfrac{1}{3}\cdot1\dfrac{1}{4}\cdot...\cdot1\dfrac{1}{100}\)

\(C=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}\)

\(C=\dfrac{101}{2}\)

 

a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)

hay \(x=\dfrac{1}{6}\)

Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)

b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)

\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)

Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)

\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)

Vậy: \(B_{min}=4\) khi x=2 và y=6

10 tháng 7 2021

Cảm ơn nhiều nha !

21 tháng 3 2021

C

21 tháng 3 2021

\(x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3-4}{6}=-\dfrac{1}{6}\)  là phương án c

A) TÌM X, BIẾT: \(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\) B) CHỨNG TỎ RẰNG: a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\) b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\) c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}} 1\) d/ \(\dfrac{49}{100} S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2} 1\) C) a/ Tìm giá trị lớn nhất...
Đọc tiếp

A) TÌM X, BIẾT:

\(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\)

B) CHỨNG TỎ RẰNG:

a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)

b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\)

c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)

d/ \(\dfrac{49}{100}< S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< 1\)

C)

a/ Tìm giá trị lớn nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị lớn nhất:

\(A=2018-\left|10-x\right|\)

\(B=1999-\left(x+2\right)^2\)

b) Tìm giá trị nhỏ nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị nhỏ nhất:

\(A=\left(2x-8\right)^2+3\)

\(B=\left|x^2-25\right|-2017\)

1

Câu 3: 

a: \(A=-\left|x-10\right|+2018< =2018\)

Dấu '=' xảy ra khi x=10

\(B=-\left(x+2\right)^2+1999< =1999\)

Dấu '=' xảy ra khi x=-2

b: \(A=\left(2x-8\right)^2+3>=3\)

Dấu '=' xảy ra khi x=4

\(B=\left|x^2-25\right|-2017>=-2017\)

Dấu '=' xảy ra khi x=5 hoặc x=-5

5 tháng 5 2022

bài 2:

\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

bài 3:

\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)

\(=>x=3\)