cho 3x+y=1. tìm giá trị nhỏ nhất của M= 3x^2 + y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3x + y = 1 => y = 1 - 3x
=> M = 3x2 + y2 = 3x2 + (1-3x)2
= 3x2 + 1 - 6x + 9x2
= 12x2 - 6x + 1
= 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))
= 12.((x2 - 2. \(\frac{1}{4}x\)+ \(\frac{1}{16}\)) - \(\frac{1}{16}\)+ \(\frac{1}{12}\))
= 12.((x-\(\frac{1}{4}\))2 + \(\frac{1}{48}\))
= 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)
=> M \(\ge\)\(\frac{1}{4}\)
Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)
Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)
Ta có \(x+y=1\Rightarrow y=1-x\)
\(\Rightarrow M=3x^2+y^2+2=3x^2+\left(1-x\right)^2+2=3x^2+x^2-2x+1+2\)
\(=4x^2-2x+3=\left[\left(2x\right)^2-2.2x.\frac{1}{2}+\frac{1}{4}\right]+\frac{11}{4}\)
\(=\left(2x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\) có GTNN là \(\frac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-\frac{1}{2}=0\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{3}{4}\end{cases}}}\)
Vậy \(M_{min}=\frac{11}{4}\) tại \(x=\frac{1}{4};y=\frac{3}{4}\)
x+y=1 => x=0 , y=1 hoac x=1 va y=0
khi x=0 va y=1 thi : M = 3 x 02 + 12 + 2=3
khi x=1 va y=0 thi : M = 3 x 12 + 02+ 2 =5
vậy giá trị nhỏ nhất của M là 3
Để M nhỏ nhất
=> (x-1)^2 = 0 ( do (x-1)^2 lớn hơn or = 0)
=> x = 1
Lại => |y+3x| = 0 ( giá trị tuyệt đối cx luôn lớn hơn or = 0)
|y+3.1| = 0
=> y = - 3
=> Min M = 2017 tại x = 1; y = -3
+ Ta có đạo hàm : y= 3x2- 3 và y’ =0 khi và chỉ khi x= 1 hoặc x= -1 .
+ Hàm số đồng biến trên khoảng ( 1; + ∞) .
+ Trên D= [m+1; m+ 2], với m> 0 ,
ta có : M i n [ m + 1 ; m + 2 ] y = ( m + 1 ) 3 - 3 ( m + 1 ) + 1
Ycbt min y< 3 hay m3+ 3m2-4< 0
Suy ra ( m-1) (m+ 2) 2) < 0
Khi đó; m< 1 và m≠- 2
+ Kết hợp điều kiện . Suy ra: 0< m< 1.
Chọn A.
3x + y = 1 => y = 1 - 3x
=> M = 3x2 + (1 - 3x)2 = 3x2 + 1 - 6x + 9x2 = 12x2 - 6x + 1
= 12.(x2 - \(\frac{1}{2}\).x + \(\frac{1}{12}\)) = 12. [(x2 - 2.x.\(\frac{1}{4}\) + \(\frac{1}{16}\)) - \(\frac{1}{16}\)+ \(\frac{1}{12}\)]
= 12. (x - \(\frac{1}{4}\))2 - \(\frac{12}{16}\) + 1 = 12. (x - \(\frac{1}{4}\))2 + \(\frac{1}{4}\) \(\ge\) 12. 0 + \(\frac{1}{4}\) = \(\frac{1}{4}\) với mọi x
Vậy Min M = \(\frac{1}{4}\) khi x = \(\frac{1}{4}\)