K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Để M nhỏ nhất

=> (x-1)^2 = 0 ( do (x-1)^2 lớn hơn or = 0)

=> x = 1

Lại => |y+3x| = 0 ( giá trị tuyệt đối cx luôn lớn hơn or = 0)

|y+3.1| = 0

=> y = - 3

=> Min M = 2017 tại x = 1; y = -3

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

9 tháng 4 2020

Qmin=2016

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

Có A = x^2 +y^2-xy-x+y+1 
=> 2A =2x^2 + 2y^2 -2xy -2x +2y+2 =(x^2 -2xy +y^2)+ (x^2 -2x+1) +(y^2 +2y +1) =(x-y)^2 +(x-1)^2 +(y+1)^2 >=0 
=> Min A =0 
Còn lại bạn tự giải nka!@

8 tháng 1 2019

\(B=\left(x-2\right)^2+\left(y+1\right)^2-2017\ge-2017\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy...

Ai giúp mình câu này với

22 tháng 3 2020

Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I

có  |x-2017|luôn\(\ge0\forall x\in Q\)

cũng có |-1|luôn\(\ge0\forall x\in Q\)

=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)

=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016

dấu''='' xảy ra <=>(x-2017)(1-x)=0

TH1:

=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)

TH2: 

=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)

tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !