K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

refer

https://lazi.vn/edu/exercise/1000869/giai-phuong-trinh-x4-x2-6-0

25 tháng 3 2022

ta cho x4 là x2 ta có pt:

x2-x-6=0

\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-2\end{matrix}\right.\)

21 tháng 4 2017

Hình như sai đề rồi

22 tháng 4 2017

à mấy số đó là số mũ nha

x6- x5+x4 - x3 + x2 -x +3/4 =0

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

29 tháng 8 2019

Ta có: 3 x 4  – 6 x 2 = 0  ⇔ 3 x 2 ( x 2  – 2) = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 0;  x 2  = -√2 ;  x 3  = √2

20 tháng 12 2021

a: \(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

=>x=-6 hoặc x=1

8 tháng 5 2020

Theo định lý Viéte kết hợp với giả thiết ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab< 0\\ac>0\end{matrix}\right.\)

Ta cần chứng minh: \(\left\{{}\begin{matrix}x_3+x_4=\frac{-b}{c}>0\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}bc< 0\\ac>0\end{matrix}\right.\) (*)

TH1: \(a>0\Leftrightarrow\left\{{}\begin{matrix}c>0\\b< 0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng

TH2: \(a< 0\Leftrightarrow\left\{{}\begin{matrix}c< 0\\b>0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng

Ta có đpcm.

Áp dụng BĐT Cauchy:

\(x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}=4\sqrt[4]{\frac{c}{a}\cdot\frac{a}{c}}=4\)

Dấu "=" xảy ra khi \(x_1=x_2=x_3=x_4\) \(\Leftrightarrow a=c\)

NV
8 tháng 5 2020

\(ax^2+bx+c=0\) (1) có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

Xét \(cx^2+bx+a=0\) (2)

\(\Delta=b^2-4ac\ge0\Rightarrow\left(2\right)\) có 2 nghiệm

\(\left\{{}\begin{matrix}x_3+x_4=-\frac{b}{c}\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow\left(-\frac{b}{a}\right):\left(\frac{c}{a}\right)>0\Rightarrow-\frac{b}{c}>0\)

\(\Rightarrow\) (2) cũng có 2 nghiệm dương

Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow a;c\) cùng dấu và trái dấu b

Ko mất tính tổng quát, giả sử \(a;c>0\)\(b< 0\) ; đặt \(d=-b>0\)

\(\Rightarrow d^2\ge4ac\Rightarrow d\ge2\sqrt{ac}\)

\(A=x_1+x_2+x_3+x_4=-\frac{b}{a}-\frac{b}{c}=\frac{d}{a}+\frac{d}{c}=d\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(A\ge2d\sqrt{\frac{1}{ac}}\ge2.2\sqrt{ac}.\sqrt{\frac{1}{ac}}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=c=\frac{1}{2}d\) hay \(a=c=-\frac{1}{2}b\)