Cho (P) / (y ^ 2) = x và 2 điểm A(1;-1),B(9;3) . Gọi M là một điểm thuộc cung AB của (P) phần của (P) bị chắn bởi dây AB . Xác định vị trí của M trên cung AB sao cho diện tích tam giác MAB lớn nhất.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Gọi \(M\left(m^2;m\right)\) với \(-1< m< 3\)
\(\Rightarrow S_{MAB}=\dfrac{1}{2}\left|\left(x_M-x_A\right)\left(y_B-y_A\right)-\left(x_B-x_A\right)\left(y_M-y_A\right)\right|\)
\(=\dfrac{1}{2}\left|4\left(m^2-1\right)-8\left(m+1\right)\right|=2\left|m^2-2m-3\right|\)
Do \(m^2-2m-3< 0;\forall m\in\left(-1;3\right)\)
\(\Rightarrow S=-2\left(m^2-2m-3\right)=8-2\left(m-1\right)^2\le8\)
Dấu "=" xảy ra khi \(m=1\) hay \(M\left(1;1\right)\)