K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

(8110- 273-921):225

=(34)10-(33)3-(32)21

=340-39-342

=339.(-25)

=-225.337

-225 nhân cho 1 số tự nhiên thì luôn luôn chia hết cho 225 nhoa

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

24 tháng 10 2021

a) ta có: \(\widehat{BAx}+\widehat{ABy}=60^o+120^o=180^o\)

Mà 2 góc này là 2 góc trong cùng phía ⇒Ax//By

b) ta có: \(\widehat{CBy}+\widehat{BCz}=140^o+40^o=180^o\)

Mà 2 góc này là 2 góc trong cùng phía ⇒By//Cz

c) Ax//By, By//Cz⇒Ax//Cz

24 tháng 10 2021

cảm ơn bạn nhiều lắm ko bt bạn sinh năm bao nhiêu để dễ xưng hô

a: Xét tứ giác ABNC có

M là trung điểm của AN và BC

=>ABNC là hình bình hành

=>AB=CN

b: AB+AC=CN+AC>NC=2AM

7 tháng 12 2016

chứng minh 

số chính phương chia 4 dư 0 hoac 1

A=n^2 (n so tu nhien)

n=2k => A=4k^2 chia het cho 4

n=2k+1=> A=(2k+1)^2=4k^2+4k+1 chia 4 du 1

Kết luận số chính phương chia cho 4 chỉ có thể  dư 0 hoặc dư 1

6 tháng 12 2016

4 số liên tiếp có dạng a, a+1 , a+2, a+3

A=a+a+1+a+2+a+3=4a+6 

T/C : "Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1"

\(\frac{A}{4}=\left(\frac{4a+6}{4}\right)=\left(a+1\right)du2\)

20 tháng 7 2023

Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:

Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.

Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:

Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).

Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD

Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD

Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.

Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.

19 tháng 7 2023

Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:

Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.

Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:

Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).

Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD

Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD

Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.

Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.