Tìm giá trị nguyên tố x, thỏa mãn:
x2-x-20=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>x^2+4xy+4y^2+y^2-2y<0
=>y^2-2y<0
=>0<y<2
=>y=1 và \(x\in Z\)
Lời giải:
Nếu y chẵn thì y=2. Khi đó: $x^2=2y^2+1=2.2^2+1=9\Rightarrow y=3$
Nếu $y$ lẻ:
Ta biết rằng 1 scp khi chia 8 có dư 0,1,4 nên với $y$ lẻ suy ra $y^2$ chia $8$ dư $1$
$\Rightarrow x^2=2y^2+1$ chia $8$ dư $2.1+1=3$
(vô lý vì $x^2$ là scp nên không thể chia 8 dư 3)
Vậy $(x,y)=(3,2)$
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
\(x^2-8x-65=0\)
\(\Leftrightarrow x^2-13x+5x-65=0\)
\(\Leftrightarrow x.\left(x-13\right)+5.\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right).\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=13\\x=-5\end{cases}}\)
Mà x là số nguyên tố nên x = 13
Vậy x = 13 là giá trị thỏa mãn yêu cầu.
Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)
<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0
<=> x=y=z
=> 3x^2014=3
=>x=y=z=1
=>P= 1^25+1^4+1^2015 = 3
x2-x-20=0
<=>x2-5x+4x-20=0
<=>x(x-5)+4(x-5)=0
<=>(x+4)(x-5)=0
=> (x+4)=0 hoặc (x-5) = 0
=> x =-4 hoặc x = 5