K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

x2-x-20=0

<=>x2-5x+4x-20=0

<=>x(x-5)+4(x-5)=0

<=>(x+4)(x-5)=0

=> (x+4)=0 hoặc (x-5) = 0

=> x =-4 hoặc x = 5

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

3 tháng 11 2015

vì x+y=4 nền (x+y)^2=4^2                                                                                                                                                                                            =x^2+ 2xy+y^2=16        ma  xy=5 nên 2xy=10  ta có x^2+y^2+10=16 ; x^2+y^2= 16-10                                                                                                                                                                                     x^2+y^2=6                                     kết quả mik là z đó nhưng k biết có đúng k bn ak

21 tháng 8 2016

 Giải pt bậc 2: x=13 và x= - 5 

21 tháng 8 2016

\(x^2-8x-65=0\)

\(\Leftrightarrow x^2-13x+5x-65=0\)

\(\Leftrightarrow x.\left(x-13\right)+5.\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right).\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=13\\x=-5\end{cases}}\)

Mà x là số nguyên tố nên x = 13

Vậy x = 13 là giá trị thỏa mãn yêu cầu.

5 tháng 4 2016

Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)

<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0

<=> x=y=z

=> 3x^2014=3

=>x=y=z=1

=>P= 1^25+1^4+1^2015 = 3

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

27 tháng 12 2021

a: \(A=\dfrac{x^2-8x+16-x^2+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-4x}{\left(x+4\right)\left(x-1\right)}\)

27 tháng 12 2021

a: A=−4x/(x+4)(x−1)

5 tháng 6 2020

\(\left(x+1\right)\left(x-1\right)< 0\)

\(\Leftrightarrow x^2-1< 0\)

\(\Leftrightarrow x^2< 1\)

\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-1\end{cases}}\)

Vậy giá trị thỏa mãn của x là 0