Cho tam giác ABC có AB < AC. Hai đường trung tuyến BM và CN cắt nhau tại G. Gọi E là trung điểm Bc. Chứng minh rằng:
a) A, G, E thẳng hàng
b) BM < CN
c) AE, BM, CN thỏa mãn bất đẳng thức tam giác.
Ai làm nhanh mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2
a) Sửa đề: Cm AG vuông góc với BC
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AN=NB=AM=MC
Xét ΔNBC và ΔMCB có
NB=MC(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔNBC=ΔMCB(c-g-c)
Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)
hay \(\widehat{GBC}=\widehat{GCB}\)
Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)
nên ΔGBC cân tại G(Định lí đảo của tam giác cân)
Suy ra: GB=GC(hai cạnh bên)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: GB=GC(cmt)
nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AG là đường trung trực của BC
hay AG\(\perp\)BC(đpcm)
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)
Xét ΔGBC có
E là trung điểm của GB(gt)
F là trung điểm của GC(gt)
Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)
Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra NM//EF và NM=EF
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{NAC}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: MB=NC
b: Ta có: ΔAMB=ΔANC
nên AM=AN
Ta có: AN+NB=AB
AM+MC=AC
mà AN=AM
và AB=AC
nên NB=MC
Xét ΔNBD vuông tại N và ΔMCD vuông tại M có
NB=MC
\(\widehat{NBD}=\widehat{MCD}\)
Do đó: ΔNBD=ΔMCD
Suy ra: ND=MD
c: Ta có: ΔNBD=ΔMCD
nên BD=CD
hay D nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: EB=EC
nên E nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,D,E thẳng hàng
BM = 3/2 BG, CN = 3/2 CG
Ta có BM + CN = 3/2 (BG + CG) > 3/2. BC = 3/2 x 12 = 18