Cho tam giác ABC vuông tại A đường cao AH. Biết AB=7,5cm ,AH=6cm
Tính AC,BC,HB,HC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABh vuông tại H(gt)
=> \(AB^2=HB^2+HA^2\) (theo định lý pytago)
=>\(HB^2=AB^2-AH^2=7,5^2-6^2=20,25\)
=>\(HB=4,5\) cm
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(AB^2=BH\cdot BC\)
=> \(BC=\frac{AB^2}{HB}=\frac{7,5^2}{4,5}=12,5\) cm
Có: BC=HB+HC
=>HC=BC-HB=12,5-4,5=8 cm
Xét ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)
=>\(AC^2=BC^2-AB^2=12,5^2-7,5^2=100\)
=>AC=10
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
AB/AC=4/3
=>HB/HC=16/9
=>HB/16=HC/9=k
=>HB=16k; HC=9k
AH^2=HB*HC
=>144k^2=24^2=576
=>k=2
=>HB=32cm; HC=18cm
AB=căn 32*50=40cm
AC=căn 18*50=30cm
Theo đề, ta có:
\(HB\left(13-HB\right)=36\)
\(\Leftrightarrow HB^2-13HB+36=0\)
\(\Leftrightarrow HB=4\left(cm\right)\)
hay HC=9(cm)
Áp dụng HTL:
\(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=78\Rightarrow AB=\dfrac{78}{AC}\)
\(AB^2+AC^2=BC^2=169\\ \Leftrightarrow\dfrac{6084}{AC^2}+AC^2=169\\ \Leftrightarrow\dfrac{6084+AC^4}{AC^2}=\dfrac{169AC^2}{AC^2}\\ \Leftrightarrow AC^4-169AC^2+6084=0\\ \Leftrightarrow AC^4-117AC^2-52AC^2+6084=0\\ \Leftrightarrow AC^2\left(AC^2-117\right)-52\left(AC^2-117\right)=0\\ \Leftrightarrow\left(AC^2-52\right)\left(AC^2-117\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}AC^2=52\\AC^2=117\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AC=2\sqrt{13}\\AC=3\sqrt{13}\end{matrix}\right.\left(AC>0\right)\)
Mà AC là cạnh lớn nên \(AC=3\sqrt{13}\left(cm\right)\) và \(AB=2\sqrt{13}\left(cm\right)\)
Tiếp tục áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=9\left(cm\right)\end{matrix}\right.\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
Bài 1:
B A C H D
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
B A C H
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
theo hệ thức lượng tam giác vuông
AC^2 = HC*BC = 16*BC (1)
AH^2 = HC*BH = 16*BH (2)
1/AH^2 = 1/AC^2 + 1/AB^2 (3)
thay 1,2 vào 3:
1/16*BH = 1/16*BC + 1/15^2 (4)
mặt khác:
BH = BC - HC = BC -16
thay vào 4:
1/16*(BC -16) = 1/16*BC + 1/225
<=> 1/(BC - 16) - 1/BC = 16/225
<=> (BC -BC +16)/((BC - 16)*BC) =16/225
<=> BC^2 - 16*BC - 225 = 0
=> BC = 25 (thỏa mãn) BC = -9 (loại)
thay vào 1 ta có AC = 20 cm
2 ta có AH = 12 cm
Cố lên bạn nha!
Đặt HB=x(cm,x>0) => BC=HB+HC=x+16
Ta có: Tam giác ABC vuông tại A có AH là đường cao
=>AB2=HB.BC
=>152=x.(x+16)
=>225=x2+16x
=>x2+16x-225=0
=>x2+25x-9x-225=0
=>x.(x+25)-9.(x+25)=0
=>(x+25).(x-9)=0
=>x=-25(loại) hay x=9(nhận)
Vậy HB=9(cm)
Ta có: AH2=HB.HC(hệ thức lượng)
=>AH2=9.16=144
=AH=12(cm)
Ta có: AC2=HC.BC(hệ thức lượng)
=>AC2=16.25=400
=>AC=20(cm)
Ta có: BC=HB+HC=9+16=25(cm)
A H B C 8 8 Vẽ hơi xấu , thông cảm nha !
Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) !
Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)= \(8\sqrt{2}\)
Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB )
tiếp tục tính AB 2 = BC2 - AC2 . Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !