\(\dfrac{x}{10}=\dfrac{y}{15},x=\dfrac{z}{2}\)và x+2y-3z=-24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(x=\dfrac{z}{2}\Rightarrow\dfrac{x}{1}=\dfrac{z}{2}\Rightarrow\dfrac{x}{10}=\dfrac{z}{20}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{x+2y-3z}{10+30-60}=\dfrac{-24}{-20}=\dfrac{6}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{6}{5}\Rightarrow x=\dfrac{6}{5}\cdot10=12\\\dfrac{y}{15}=\dfrac{6}{5}\Rightarrow y=\dfrac{6}{5}\cdot15=18\\\dfrac{z}{20}=\dfrac{6}{5}\Rightarrow y=\dfrac{6}{5}\cdot20=24\end{matrix}\right.\)
Vậy...
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{-21}\)
Áp dugj tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{-21}=\dfrac{x+y+z}{10+15+\left(-21\right)}=\dfrac{92}{14}=\dfrac{46}{7}\)
Còn lại bạn tự tính nha
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
a) Áp dụng t/x dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)
b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)
Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)
\(\dfrac{x}{2}=3\Rightarrow x=6\)
\(\dfrac{y}{3}=3\Rightarrow y=9\)
\(\dfrac{z}{-5}=3\Rightarrow z=-15\)
a) Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/6=z/3=(x-y+z)/(2-6+3)=18/(-1)=-18`
`=>x=-36`
`y=-108`
`z=-54`
b) Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/3=z/4=(x+2y-3z)/(2+2.3-3.4)=(-20)/(-4)=5`
`=>x=10`
`y=15`
`z=20`.
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{2-6+3}=\dfrac{18}{-1}=-18\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-18\right)=-36\\y=6\cdot\left(-18\right)=-108\\z=3\cdot\left(-18\right)=-54\end{matrix}\right.\)
\(b.\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-5\right)=-10\\y=3\cdot\left(-5\right)=-5\\z=4\cdot\left(-5\right)=-20\end{matrix}\right.\)
\(x=\dfrac{z}{2}\Leftrightarrow\dfrac{x}{10}=\dfrac{z}{20}\)
=> Ta có tỉ lệ thức : \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{x+2y-3z}{10+30-60}=\dfrac{-24}{-20}=\dfrac{6}{5}\)
=> x= \(\dfrac{6}{5}.10=12\)
y= \(\dfrac{6}{5}.15=18\)
z= \(\dfrac{6}{5}.20=24\)
Vậy...