\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và x - 2y +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)

Do đó: x=6; y=9; z=15

18 tháng 10 2018

a) Giải

\(5x=2y=3z\)

\(\Rightarrow\dfrac{5x}{30}=\dfrac{2y}{30}=\dfrac{3z}{30}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x+y-z}{6+15-10}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=3\Rightarrow x=18\\\dfrac{y}{15}=3\Rightarrow y=45\\\dfrac{z}{10}=3\Rightarrow z=30\end{matrix}\right.\)

Vậy \(x=18,\) \(y=45\) hoặc \(z=30.\)

c) Giải

(Vì mk bt bạn bấm nhầm nên đề bị sai, mk sửa 7 \(\rightarrow\) y do trên bàn phím, 7 với y ở vị trí gần nhau mà 2 với y ở cách xa nhau nên sửa như vậy nhé)

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}=\dfrac{x-1-2y+4+3z-9}{10}\)

\(=\dfrac{\left(x-2y+3z\right)-\left(1-4+9\right)}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\Rightarrow x=\dfrac{13}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\Rightarrow y=\dfrac{22}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\Rightarrow z=\dfrac{31}{5}\end{matrix}\right.\)

Vậy \(x=\dfrac{13}{5},\) \(y=\dfrac{22}{5}\)\(z=\dfrac{31}{5}.\)

c) Giải

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x^2+2y^2-z^2=-12\)

\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2-\left(5k\right)^2=-12\)

\(\Rightarrow4.k^2+18.k^2-25.k^2=-12\)

\(\Rightarrow\left(-3\right)k^2=-12\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-10\end{matrix}\right.\)

\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-4;y=-6;z=-10\\x=4;y=6;z=10\end{matrix}\right..\)

20 tháng 10 2018

câu b bạn ko làm đc hả

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

23 tháng 8 2017

\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)

\(\Leftrightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{x+y+z}{\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-196}{\dfrac{42}{18}}=\dfrac{-98}{\dfrac{21}{18}}=\dfrac{-588}{7}\)

(thấy lẻ,nếu đề ko sai thì làm tiếp)

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y-z}{2+3-4}=\dfrac{-10}{1}=-10\)

\(\Rightarrow\left\{{}\begin{matrix}x=-10.2=-20\\y=-10.3=-30\\z=-10.4=-40\end{matrix}\right.\)

Vậy......

23 tháng 8 2017

tks nha bn

28 tháng 11 2017

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

28 tháng 11 2017

câu h thiếu điều kiện rồi bạn ơi

3 tháng 4 2020

Ta có 3x-2y/5=2z-5x/3=5y-3z/2

=> 3xz-2yz/5z=2zy-5xy/3y=5yx-3zx/2x

=\(\frac{3yz-2xz+2zx-5yx+5xy-3zy}{5z+3x+2y}\) =0

=>3x-2y/5=0=>3x=2y=>x/2=y/3 (1)

2z-5x/3=0=>2z=5x=>z/5=x/2 (2)

Từ (1) và (2) => x/2=y/3=z/5

(bạn tự lm tiếp nhé!)

11 tháng 7 2017

a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)

Thay (1) vào 4x - 3y + 2z = 36

\(\Rightarrow4.k-3.2k+2.3k=36\)

\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)

\(\Rightarrow k=\dfrac{36}{4}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)

Vậy...............................................................

b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)

Thay (2) vào 2x - 3z = 44

\(\Rightarrow2.5k-3.7k=44\)

\(\Rightarrow-11k=44\Rightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)

Vậy,................................................

c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)

Thay (3) vào -3z - 2y - x = -88

\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)

\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)

\(\Rightarrow k\in\varnothing\)

Suy ra: Không có cặp ( x; y; z) thỏa mãn

Vậy.................................................................

d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)

Thay (4) vào 5y - 2z = 114

\(\Rightarrow6.12k-2.11k=114\)

\(\Rightarrow50k=114\Rightarrow k=2,28\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)

Vậy..............................................

e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)

\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)

Thay (5) vào -2z + 3y - 4x = -452

\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)

\(\Rightarrow-113k=-452\Rightarrow k=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)

Vậy.......................................................

11 tháng 7 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

+) \(\dfrac{x}{1}=9\Rightarrow x=9\)

+) \(\dfrac{y}{2}=9\Rightarrow y=18\)

+) \(\dfrac{z}{3}=9\Rightarrow z=27\)

Vậy x = 9; y = 18; z = 27.

tương tự

16 tháng 9 2017

Nhờ các bạn trả lời giúp mik

16 tháng 9 2017

1/ a, Ta có :

\(x-2y+3z=35\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)

Vậy ..

26 tháng 7 2017

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)

Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)

\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)

\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)

Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

26 tháng 7 2017

giúp mk nha! thank you

 

5 tháng 9 2017

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{10}=\dfrac{z}{21}=\dfrac{5x+y-2z}{6\cdot5+10-2\cdot21}=\dfrac{28}{-2}=-14\)

\(\Rightarrow x=\left(-14\right)6=-84;y=\left(-14\right)10=-140;z=\left(-14\right)21=-294\)

Vậy \(x=-84;y=-140;z=-294\)

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)

\(x=2\cdot15=30;y=2\cdot20=40;z=2\cdot28=56\)

Vậy \(x=30;y=40;z=56\)

c. Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12\left(x+y+z\right)}{49}=\dfrac{12\cdot49}{49}=12\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\\\dfrac{12y}{16}=12\\\dfrac{12z}{15}=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

Vậy \(x=18;y=16;z=15\)

d. Ta có:

\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)

\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

\(\Rightarrow x=2\cdot10=20;y=2\cdot15=30;z=2\cdot21=42\)

Vậy \(x=20;y=30;z=42\)

5 tháng 9 2017

a) \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)\(=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)

\(\Rightarrow\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)

\(\Rightarrow\dfrac{y}{6}=2\Rightarrow y=2.6\Rightarrow y=12\)

\(\Rightarrow\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)

Vậy \(x=20;y=12\)\(z=42\)