Tập nghiệm của phương trình \(\sqrt{x^2+4x}-\sqrt{\frac{x^2}{2}}-8=0\)là?
CHỈ CHO MÌNH CÁCH LÀM VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này bạn dùng cách nhân với 1 lượng liên hợp:
<=> \(\frac{\sqrt{X+3}-\sqrt{X+2}}{x+3-x-2}\)+\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}\)+\(\frac{\sqrt{x+1}-\sqrt{x}}{x+1-x}\)=1
<=>\(\sqrt{x+3}-\sqrt{x}=1\)
<=> \(\sqrt{x+3}=1+\sqrt{x}\)
Tới đây bình phương hai vế, ta có:
x+3 =1+2\(\sqrt{x}\)+x
<=> 2\(\sqrt{x}\)=2 <=> X=1
\(\Leftrightarrow\sqrt{x\left(x+4\right)}=\sqrt{\frac{\left(x+4\right)\left(x-4\right)}{2}};dkxđ;x\le-4;x\ge4\)
\(\Leftrightarrow x\left(x+4\right)=\frac{\left(x+4\right)\left(x-4\right)}{2}\)
\(\Leftrightarrow\left(x+4\right)\left(2x-x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\left(TM\right)\)
theo chị em nên bình phương 2 vế